

Technology Collaboration Programme by lea

Enhanced Oil Recovery

Polymer injectivity – scaling viscosity from lab to field

// STAVANGER 2022 ANNUAL EVENT // 21 - 24 Nov

Tormod Skauge¹ Arne Skauge^{1,2}, Arne Stavland³, Daniel Strand³, Jan Erik Iversen³, Ali AlSumaiti⁴, Shehadeh Masalmeh⁴

(1) Energy Research Norway, (2) Heriot Watt University, (3) NORCE Energy, (4) ADNOC

Outline

- Polymer Flooding in a Low Carbon Future
- Challenges in Polymer Flooding
- Polymer Injectivity Criteria
- Polymer Injectivity Results
- Implementation of Lab Data in Polymer Injectivity Well Test
- Summary

Polymer Flooding – a Part of the Energy Solution

- Oil and gas will be a part of the energy solution for the foreseeable future
- Making the extraction more energy efficient and less CO2 intensive is a key task
- Most oil fields are water producers, i.e. they produce more water than oil

Polymer Flooding in a Low Carbon Future

- Water handling is the dominant energy consumer in oil production
- Water injection, production, lift, separation
- 60-80 % of the exergy invested is related to water handling
- Reducing water cut is the most beneficial action in order to reduce CO2 emissions
- Polymer flooding improves sweep and reduces WC
- PF can lead to more than 50% reduction in CO2 emissions per bbl oil produced
- Cheap solution PF will give a return on invested money

Challenges for polymer flooding

- Proven in (homogeneous) sandstone, up to 90 °C, > 100 mD, sea water (Mangala, Marmul, Captain, Peregrino, ...)
- Challenges
 - HTHS
 - Low permeability
 - Heterogeneous
 - Carbonates

Challenges for polymer flooding

- Proven in (homogeneous) sandstone, up to 90 °C, > 100 mD, sea water (Mangala, Marmul, Captain, Peregrino, ...)
- Challenges
 - HTHS
 - Low permeability
 - Heterogeneous
 - Carbonates

Needed to stretch the limits of technology New polymer was qualified through an international cooperation

Polymer Injectivity

- Critical parameter
- Voidage replacement maintain injection
- Increased viscosity
- Non-Newtonian (Shear thinning, thickening)
- Fractures
- Radial flow
- Well clean up
- Sand consolidation

Polymer Injectivity – Evaluation Criteria

In laboratory studies, polymer injectivity is evaluated primarily by 3 factors:

- Propagation and filtration (pressure stability)
- Formation damage (permeability reduction, RRF)
- Mechanical degradation of the polymer (viscosity loss)

from Herzig et al. 1970

Propagation and Filtration

- Filter cake formation observed as a continuous increase of differential pressure at an exponential rate.
- Caused by accumulation of polymer at the sandface:
 - Large polymer size relative to the pore size and/or
 - Poor homogeneity of the polymer solution
 - Debris/residuals in the polymer solution
- Leads to a gel-like residue on the surface of the core, eventually blocking the passage of polymer through the core, i.e. plugging.
- Depth filtration observed as a steady increase in dP
 - Surface interaction of smaller particles
 - Blocking of pore throats by intermediate and large particles

Schematic representation of pressure development in the case of filter cake formation and in-depth filtration for a polymer injectivity experiment.

Formation damage - RRF

- Permeability is reduced as a consequence of polymer adsorption and entrapment
- Residual Resistance Factor, RRF, i.e. ratio of permeability prior to and after polymer injection. RRF = K_{w,pri}/K_{w,post}
- Generally perceived as irreversible.
- Unlike filtration, RRF reaches a plateau and constant value once adsorption is satisfied, typically after 1 – 5 PV

Mechanical Degradation

- Viscosity loss due to mechanical degradation may lead to low viscosity in the reservoir
- Degradation may occur from e.g. choke passage, screen perforation, entrance to porous media.
- Controlled pre-degradation may reduce uncertainty and improve injectivity
- In lab studies, flow velocity has to be scaled according to well properties and permeability range

Scaling field to lab flow rates

- In many cases in the literature, flow rates are scaled directly from the flow velocity in at the sandface of given permeability
- However, in a multi-layered well, the flux will vary with permeability
- It will therefore be misleading to conduct injection experiments with the same rate in core with high and low permeability.

Q_H ≠ Q_L

Scaling field to lab flow rates

- A two-layer simplified model is used to represent the high and low target zones.
- Flow velocities are matched from the simple:
 - u_{well} = u_{core}
 - $Q_{well}/A_{well} = Q_{core}/A_{core}$
- The flow velocity in a laboratory core experiment cannot be used directly because the injection well does not have constant permeability
 - $Q_{Tot} = Q_H + Q_L$
 - $h_{Tot} = h_H + h_L$
 - $Q_H/Q_L = (K_H^*h_H) / (K_L^*h_L)$
 - $Q_L = Q_{tot} / [1 + (K_H^* h_H / K_L^* h_L)]$
 - $Q_{L,core} = [Q_{well} * A_{core} / A_{well}] / [1 + (K_H * h_H / K_L * h_L)]$

Scaling lab injection rates

Parameter	Well		Well	Core	unit
	(field units)		(SI units)	(SI units)	
Well/Core injection rate	2000	bbl/day	318	TBD	m3/day
Well/Surface diameter	7	Inch	0.1778	0.038	m
Well completion length (zone thickness)	50	ft	15.24	-	m
Porosity	0.28	frac.	0.28	0.28	frac.
Injection surface area (A=2πrh)			8.5	0.00113	m2
Darcy velocity (u=Q/A)			37.4	37.4	m/day

2000 mD 150 mD K_L h_L

Scaling lab injection rates

$$\Delta P = \frac{Q}{A} \frac{\mu(\dot{\gamma})L}{K} \quad \dot{\gamma}_{eff} = \frac{4\alpha u}{\sqrt{8K\phi}}$$

Can estimate boundaries for when elongational effects become important for injectivity

Scaling lab injection rates

Polymer Injectivity – Influence of pre-degradation

How does pre-degradation influence injectivity?

- Pre-sheared to 50, 70, 90 and 100% of initial viscosity using Silverson homogenizer
- Polymer SAV10 in high salinity brine (240 000 ppm TDS)
- Different degree of pre-degradation leads to difference in Mw for polymers A-D
- Different Mw gives different rheology curves for polymers A-D

	Pre-degradation (%)	Viscosity at 2000 ppm (mPas)	Applied Conc (ppm)	Viscosity at diluted concentration (ppm, 10 1/s 22C)
А	50	4.71	2915	8.47
В	30	6.54	2337	8.46
С	10	8.37	2000	8.37
D	0	9.35	1874	8.42

Polymer Injectivity – Influence of pre-degradation

Polymer Injectivity – 50% pre-degradation

- Good injectivity as shown by stable pressure over large PV injected
- No sign of filter cake formation or depth filtration
- Very good result for low permeability and heterogeneous carbonate rock

Polymer Injectivity - pre-degradation

- Good injectivity for all solutions as shown by stable pressure over numerous PV injected
- Injection pressure inversely proportional to % pre-degradation

	Α	В	С	D
Kw,abs (mD)	147			
Kw,Sorw (mD)	66			
Kw,end (mD)	30	30	30	30
RF at Vd = 18 m/day	14	26	43	56*
RF/RRF	6	12	20	25
RF/Qmax	14/14	26/14	43/14	57/11
RRF	2.2	2.2	2.2	2.2

Influence of pre-degradation on injectivity

- The apparent viscosity at the highest rate, equivalent to an effective shear rate of 21 000 1/s, is plotted as function of predegradation below
- The apparent viscosity is strongly decreasing for pre-degraded solutions. This is due to the reduced Mw of the polymer.
- The lower average Mw leads to lower shear thickening of the polymer as illustrated in the graph lower left.

Same bulk viscosity injected, different pre-degradation => Large difference in injection pressure

Polymer Injectivity – Influence of predegradation

- No indication of plugging or in-depth filtration were observed for the reservoir rock
- The permeability reduction, RRF, of the core after polymer flood is 2.2 which is relatively low for carbonate rock at high salinity.
- Negligible mechanical degradation, only a 10% viscosity reduction at highest injection rate for the non-degraded solution. Pre-degraded solutions showed no mechanical degradation.
- Non-degraded polymer show 4 x the injection pressure of 50% pre-degraded polymer. To compensate for the viscosity loss of the pre-degraded polymer, a concentration increase of 60% is required
- The results are not directly transferable to field conditions. Near-well conditions may dominate and detailed simulations studies are required.

Modeling Polymer Injectivity - PIT

Pressure barrier due to polymer injection, keep Water or (CO2) in the lower zone and improve sweep efficiency and recover by-passed oil.

Polymer RF Target ± 10.

Polymer injection series

	Pre-degradation (%)
А	50
В	30
С	10
D	0

Modeling Polymer Injectivity - PIT

al, 2019).

Assisted HM

Iterative optimization history match method implemented to evaluate multiple parameters and possible scenarios.

WBHP HM Scenarios

Good fit based on experimental data No injectivity difference between pre-degraded solutions

Summary

- A novel polymer was developed and qualified for HTHS applications through laboratory studies
- Polymer injectivity was evaluated in the lab and showed that reservoir viscosity could be maintained even for pre-degraded solutions by concentration compensation
- A 760 day polymer injectivity well test was performed successfully
- PIT showed good injectivity and better than expected from lab experiments
- The need for pre-degradation was reduced in the field compared to the lab

// STAVANGER 2022 ANNUAL EVENT

Technology Collaboration Programme

eor

Enhanced Oil Recovery

Backup slides

Injection Model

Initial Grid From Well Logs

Upscaled Radial Grid

- Capture the expected exponentially decreasing velocity profile.
- Corroborate the impact of multiple Polymer parameters on Injectivity.

Polymer Injectivity Well Test

Water Injection Base Line:

354 days / 1,4 Mbbl

Polymer Injection:

138 days / 146 Mbbl / 68 ton

Chase Water Injection:

• 270 days / 380 Mbbl.

PIT Monitoring Program

- RST SRT PT PFO
- Real-time pressure / temp downhole & surface gages.
- In-line and manual polymer viscosity.

Polymer Injection Well Test

- Good history match obtained using lab parameter ranges and consistent with anchor periods and PFOs interpretation.
- Based on both laboratory data and PIT interpretation, a Resistance Factor about 10 can be achieved using polymer concentrations between 1500 2000 ppm active.
- Injectivity Index (II) declined from ~13.0 bpd/ psi (WI baseline) to a minimum of 1.0 bpd/ psi (during Polymer injection) and it was stabilized at 2.6 bpd/ psi (during Chase Water).