Geomechanical-induced 4D time shifts

Thomas Røste

- Why monitor overburden?
- Time shifts and geomechanics
- Field examples
- Summary

Why monitor overburden

- Why monitor overburden?
- Time shifts and geomechanics
- Field examples
- Summary

Time shifts and geomechanics

- 4D seismic time shifts capture changes in both thickness (z) and velocity (v)
- Røste et al. (2005) and Hatchell et al. (2005) independently assumed*:

$$\frac{\Delta v}{v} \approx -R\epsilon_{zz}$$

* The dilation factor *R* is sometimes referred to as α . The relation is $R = -\alpha$

Equinorworkflow

Workflow for modelling time shifts

- Input:
 - Reservoir pressures
 (Eclipse model)
 ↓
- 4D geomechanical model:
 - Displacements
 - Stress changes
- Strain (ϵ_{zz}) *R*-factor model: $\Delta v/v \approx -R\epsilon_{zz}$ • Output: - Velocity changes (Δv) \downarrow - Time shifts

Published in TLE by Røste and Ke (2017)

- Why monitor overburden?
- Time shifts and geomechanics
- Field examples
- Summary

Geomechanical model (97-14)

Geomechanical model (97-14)

Time Shifts (97-14) @BCU

Published in TLE by Røste and Ke (2017)

Time Shifts (97-09) @BCU

Published in TLE by Røste and Ke (2017)

Time Shifts (06-09) @BCU

Published in TLE by Røste and Ke (2017)

0	20	40	60	80	100

0	20	40	60	80	100
	lulululu				

- Why monitor overburden?
- Time shifts and geomechanics
- Field examples
- Summary

Summary

- Overburden geomechanical changes:
 - Occur for all fields
 - Might indicate depleted areas
 - Detected as 4D seismic time shifts

- Time shift workflow:
 - Useful for updating reservoir model
 - Indicates $R_{avg} \approx 15$ for overburden

Acknowledgments

- Ganpan Ke for fruitful discussions and geomechanical modelling input
- Several people for discussions, especially:

Sascha Bussat, Lasse Renli, Martin Landrø, Kenneth Duffaut, Bård Bostrøm, Ola-Petter Munkvold, Øyvind Kvam, Ole K. Søreide, Svend Østmo, Odd Solheim, Colin MacBeth, Jon Lippard, Frank Aanvik, Torill Andersen, and Vibeke Haugen

• The Snorre, Statfjord, and Heidrun partnerships for permission to present this data

References

- Røste, T. and G. Ke, 2017, Overburden 4D time shifts Indicating undrained areas and fault transmissibility in the reservoir: *The Leading Edge.*
- Røste, T., O.P. Dybvik, and O.K. Søreide, 2015, Overburden 4D time shifts induced by reservoir compaction at Snorre field: *The Leading Edge.*

• Røste, T., A. Stovas, and M. Landrø, 2005, Estimation of layer thickness and velocity changes using 4D prestack seismic data: 67th EAGE, Extended Abstracts, C010.

• Hatchell, P.J., R.S. Kawar, and A.A. Savitski, 2005, Integrating 4D seismic, geomechanics and reservoir simulation in the Valhall Oil Field: *67th EAGE, Extended Abstracts, C012.*