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The Geoscience Problem

Interpret complex 3D geobodies 
fast with minimal human input

Manual 2D interpretation on 18 crosslines

Manual (point) interpretation:
● time consuming
● prone to errors

Channels with hard-to-track 
basal surfaces

3D tributary channel network

Automatic Seismic Interpretation

Earth Science Analytics acknowledge New Zealand Petroleum and Minerals (NZPM) for providing Parihaka 3D data



Methodology followed
Methods & Parameters controlled:

● Train - Split - Blind
● Training slices: 18 crosslines
● Blind slices: 2 crosslines
● Patch size: 256 x 256 
● Random Noise: 1%
● Dropout: 0.2
● Epochs: 100

Architectures tested:

● Unet - Light Unet
● Segnet - Light Segnet
● PSP - Light PSP
● DeepLab3+ -  Light DeepLab3+

Loss functions:

● Weighted cross entropy
● Dice  
● Jaccard



Segnet
Light - Segnet

● Add/remove any number 
of layers

● Respectively customize 
filters on convolution layers

This results in full control over 
network depth and number of 
training parameters.

Classic Segnet Architecture [1]

Year released: 2015
Benchmarks (VOC2012)[5] -Mean IOU: 0.599



Unet
Classic Unet Architecture [2]

Light Unet

● Add/remove any number 
of layers

● Respectively customize 
filters on convolution 
layers

This results in full control over 
network depth and number 
of training parameters.

Year released: 2015
Benchmarks (ISBI cell tracking challenge) -Mean IOU: 0.775 



Pyramid Scene Parsing Network (Psp Net)

Light PSP

● During Feature Map phase 
usually a Resnet (huge) is used so 
we:

○ Reduce Resnet’s overall size
● During Pyramid Pooling Module 

one can modify the  dimensions 
of  the sub-regions 

Classic Psp architecture [3]

Year released: 2017
Benchmarks (VOC2012) -Mean IOU: 85.4



DeepLab v3+

Light Deeplab

Same as the Psp Net 
one can use smaller 
CNN’s as feature 
extractors and different 
Convolution dilation 
rates (Atrous Conv)

Classic DeepLabV3+ architecture [4]

Year released: 2018
Benchmarks (VOC2012) -Mean IOU: 87.8



Truth Labels on Blind Test Slices
Blind 2Blind 1

Human expert’s seismic interpretation (labels) are regarded as ground truth



       Full Segnet 
(~29M parameters)

IoU: 0.624 IoU: 0.709

    Light Segnet 
 (~2M parameters)

IoU: 0.701 IoU: 0.788

    Light Segnet 
 (~300K parameters)

IoU: 0.704 IoU: 0.742

Truth

Segnet results
Blind 1 Blind 2



Segnet results



IoU: 0.701 IoU: 0.788

IoU: 0.633 IoU: 0.741

IoU: 0.751 IoU: 0.710

Truth

Light Segnet results against loss functions
Blind 1 Blind 2

     Light Segnet 
 (~2M parameters)

   Light Segnet 
dice

    (~2M parameters)

   Light Segnet    
jaccard

    (~2M parameters)



       Full Unet
 (~31M parameters)

IoU: 0.806 IoU: 0.855

    Light Unet 
 (~2M parameters)

IoU: 0.854 IoU: 0.875

    Light Unet 
 (~300K parameters)

IoU: 0.843 IoU: 0.868

Truth

Unet results
Blind 1 Blind 2



Unet results



IoU: 0.854 IoU: 0.875

Truth

Light Unet results against loss functions
Blind 1 Blind 2

IoU: 0.874 IoU: 0.823

IoU: 0.882 IoU: 0.804

     Light Unet dice
    (~2M parameters)

Light Unet jaccard
 (~2M parameters)

     Light Unet 
 (~2M parameters)



       Full Psp
 (~12M parameters)

IoU: 0.732 IoU: 0.834

    Light Psp 
 (~1.5M parameters)

IoU: 0.854 IoU: 0.875

    Light Psp 
 (~300K parameters)

IoU: 0.843 IoU: 0.868

Truth

Psp results
Blind 1 Blind 2



Psp net results



IoU: 0.854 IoU: 0.875

IoU: 0.856 IoU: 0.863

IoU: 0.861 IoU: 0.871

Truth

Light PSP results against loss functions
Blind 1 Blind 2

     Light Psp dice
    (~1.5M parameters)

     Light Psp 
 (~1.5M parameters)

Light Psp jaccard
 (~600K parameters)



IoU: 0.817 IoU: 0.851

IoU: 0.799 IoU: 0.827

IoU: 0.764 IoU: 0.802

Truth

DeepLabv3+ results (Xception feature extractor)
Blind 1 Blind 2

   Full DeeplabV3+
  (~41M parameters)

Light DeeplabV3+ 
 (~1.5M parameters)

 Light DeeplabV3+ 
(~650K parameters)



DeepLabv3+ results



IoU: 0.799 IoU: 0.827

IoU: 0.853 IoU: 0.838

IoU: 0.858 IoU: 0.837

Truth

Light DeepLabv3+ results against loss functions
Blind 1 Blind 2

Light DeeplabV3+
           Dice
 (~1.5M parameters)

Light DeeplabV3+ 
 (~1.5M parameters)

Light DeeplabV3+
        Jaccard 
 (~1.5M parameters)



Comparison of light networks vs Loss

JaccardDiceWeighted
Categorical Crossentropy



Conclusions Architectures, Data driven 

- On limited dataset large (public) networks tend to overfit
- Large networks do not guarantee better performance
- Revisit results obtained by Segnet architectures
- Smaller networks easier (and cheaper) to train
- Weighted Cross Entropy Loss slightly tends to overestimate volumes 

of unbalanced class (channels in the specific problem)
- Dice and Jaccard Loss slightly tends to underestimate volumes of 

unbalanced class

It is important to check network size with respect of the available 
labels



Conclusions, G&G
3D view of the predicted 

channel network (Light-Unet)

- ASI reduces 
interpretation cycle time

- ASI can improve quality 
of interpretation of very 
complex geological 
objects

- ASI 3D output can be 
used in for 3D geological 
models



Conclusions, G&G
Interactive labeling

- Model seems to predict ‘better’ than 
the labeler in some slices

- Obtaining True labels is a challenge, 
but key in order to train properly

- Interactive approach gives an 
effective suggestion for the labeller to 
make a decision.

- With the real time helping from DNN, 
the labeller can resolve challenges in 
complex areas

- DNN architectures smooth out 
possible inconsistency in labels by 
minimizing a global loss

Model result 
(transparent blue)

True label 
(darker blue)
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