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EOR - Introduction

Arne Skauge
Centre for Integrated)Petroleum Research

EOR fundamentals and toolbox
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FORCE - EOR Competence Building seminar, 6-7 November, Stavanger

Structure of presentation

EOR basics

EOR experience North Séa reservoirs
Gas injection EQR

Waterflood EOR

Way forward
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EOR basics
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Recovery Mechanisms
(conventional view)

Primary
Recovery
Artificial Lift
‘ Natural Flow Pump - Gas Lift - Etc.
| Conventional
Secondary Recovery
Recovery
Pressure
Waterflood Maintenance
Water - Gas Reinjection
Tertiary n
Recovery
Thermal Chemical | Enhanced
Recovery
Solvent Other

Source: Adapted from the Oil & Gas Journal, Apr. 23, 1990
uniResearch

CIPR - CENTRE FOR INTEGRATED PETROLEUM RESEARCH



Target Oil for EOR

Some definitions:

- Primary oil recovery is where the wells.in-a reservoir
produce under the natural reservoir energy (pressure)

- typical oil recovery from 1-10%, of-oil in place

- Secondary oil recoveryis where we inject water (nearly

always) to displace the oil = waterflooding; same effect if
strong aquifer drive

- typical oil recovery from 15-60% of oil in place

- Improved or Enhanced oil recovery (EOR; IOR) is where
we do something more advanced to obtain the

oll left in the reservoir after secondary recovery
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Oil recovery efficiency = E, X E, X E,,
E, X Ey

1

Soi = 1- Swi

Saturation, S

Sor
Residual oil
ED
0 1
Np=[1/Bo:-Vp:(Soi-Sor)]-EA-EV Porevolum, Vp
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Oil recovery efficiency = E, X E, X E,,
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Saturation, S

Sor
‘ Residual oil
ED
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Trapped (residual) oil & Bypassed Oil:
the targets for EOR

Inject
water

CIPR - CENTRE FOR INTEGRATED PETROLEUM RESEARCH

30%) Bypassed Oil
/\80 ) (20 - 60%)

Produce
oil

+
Water



Residual oil saturation
Trapped Oil at the Pore Scale in a Rock

Rock grains (~10 - 100um)  Rock pores (~0.1 - 1Q0um)

This 1s the capillary
trapped oil or

residual oil, S,

... consider the
mechanism of trapping

N.B. lengthscales
Particulary ...

Rock pores ~0.1 - 100um

trapped oil “ganglia” (or blobs)

SEARCH



Residual oil saturation

Trapped Oil at the Pore Scale in a Rock:
trapping by “snap-oft”

TRAPPED thisoiHfilament is
unstable and “snaps”
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OIL TRAPPING BY FILAMENT SNAP OFF
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Residual oil saturation

Trapped Oil at the Pore Scale in a Rock:
trapping by “snap-oft”

“spajp-off”
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Residual oil saturation

Trapped Oil at the Pore Scale in a Rock:
pressure to mobilise oil into a smaller pore

SO WHAT CAN WE CHANGE TO Pressure.gradient to mobilise oil

MOVE RESIDUAL OIL ?? .
Oilpressure = P,
R1I

R,

w AR K water

\

AX . Water pressure = P,,

AP=26[1_1

<
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Trapped Oil at the Pore Scale in a Rock:
pressure to mobilise oil into a smaller pore

SO WHAT CAN WE CHANGE TO Pressure.gradient to mobilise oil
MOVE RESIDUAL OIL ??

1 1
AP _ ‘gi =
AX A R, K

Oilpressure = P,

AX . Water pressure = P,

Possibly LOWER interfacial tension, O, but HOW ??
- Surfactant - “soaps” lower O

- Inject gas (CH,, CO, etc..) which can lower O and do other things
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Trapped Oil at the Pore Scale in a Rock:
pressure to mobilise oil into a smaller pore

SO WHAT CAN WE CHANGE TO Pressure.gradient to mobilise oil
MOVE RESIDUAL OIL ??

Oilpressure = P,

<

AX . Water pressure = P,

LOWER interfacial tension, O, but BY HOW MUCH ??

V.
Define Capillary Number, N, as - N_ =

(v = velocity; u = viscosity; ¢ = inter?acial tension)
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Residual oil mobilisation at increased Capillary No.

; 1.0 r+ —— +t4 - H-H

0.9
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Note that
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. RESIDUAL OIL SATURATION AFTER WATER FLOODING

X Oi_-“l =

I:6=U f e ey e R :.'-'1': Ll i e ,_"qu_k__*,'
e e 0t
: ‘ : “CAPILLARY -'NUMB‘-ER.‘ Ne¢ .

'RESIDUAL OIL SATURATION AFTER SURFACTANT FLOODING

(After Morrow & Chatzis)
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Sweep

Areal sweep 100 M=1
Producer .
Fluid 2 % 80r M=10
hﬂ::-JflM[EML— Stm
K'to/Mo 5 M=100
§ 40
=
M < 1 stable front =2
O0 015 1.'0 115 270

MOVABLE PORE VOLUMES INJECTED

k \ {
Tunnel
D
k
Random

D
uxesearch
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Enhanced Oil Recovery (EOR)

Enhanced Oil Recovery process

overview
Thermal Chemical Miscible
Steam Alkaline/Caustic CO,
In-situ combustion Polymer and polymer particles Inert gas N,
Hot water Surfactant - polymer Miscible hydrocarbon slug

uni Research
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i Low salinity water flood
' Foam
. WAG

Enrich gas

High pressure lean gas
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EOR experience North Sea reservoirs
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CIPR - Centre for
'am:-:_:rr

Il:;tegrated Petroleum Reseéea,l

Excellence

Maximizing oil recovery for Norwegian oil and gas fields

Challenges

|dentify undrained area
Well distance
Well placement

Logistics

uni Research

CIPR - CENTRE FOR INTEGRATED PETROLEUM RESEARCH



 CIPR - Centre for

Il_j;teg rated Petroleum Reseaeal

Excellence

Maximizing oil recovery for Norwegian oiland gas fields

Challenges Actions

|[dentify undrained area 4D seismic and EM

Well distance drill cheap/fast new wells

Well placement sidetrack injectors into the oil zone
Logistics minimize the amount of chemicals for EOR
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_ CIPR - Centre for
et SN Integrated Petroleum Reses

Excellence

Maximizing oil recovery for Norwegian oiland gas fields

Challenges Actions

|[dentify undrained area 4D seismic and EM

Well distance drill cheap/fast new wells

Well placement sidetrack injectors into the oil zone
Logistics minimize the amount of chemicals for EOR

Use solved challenges to activate EOR
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Experience with field implementation of EOR

Surfactant
Single Well Tracer Tests (Gullfaks, Oseberg)
Surfactant Single Well Test (Gullfaks, Oseberg)

Other SWTT
Gas Single Well Tracer Test (implemented on Oseberg)

Low salinity SWTT
(Heidrun, Snorre)

Conformance control
(Gullfaks, Snorre, +%)

WAG

(many fields)

Foam and FAWAG

(Brage, Oseberg, Snorre, Veslefrikk, ++)
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Gas:ifjection EOR
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Gas processes

® Miscible gas

® WAG

® Foam

® CO2 (EOR and seqguestration)
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Multi-contact miscible gas injection

MINIMUM
RICH-CAS
COMPOSITION

PLAIT POINT

PLAIT POINT
TIE LINES
TIE LINES

CRITICAL
TIE LINE

RESERVOIR

RESERVOIR OIL COMPOSITION

OIL COMPOSITION

HEAVY . INTERMEDIATE HEAVY . INTERMEDIATE
Vaporizing Condensing
PRESSURE (MPa)
100 |7 ? ? 1.0 111
o© O
9o} D/(‘:\OIMMP
80

OF CO:2INJECTED

70F
Olmmiscible
OMiscible

1 1 1 1 1 1 L
900 1000 1100 1200 1300 1400 1500 1600 1700
uni Research TEST PRESSURE (psig)
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Viscous fingering
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Sandstone Carbonates

Rl ool maliees "0 ow mpeis [ abocdaasd 1 BT e
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uni Research

CIPR - CENTRE FOR INTEGRATED PETROLEUM RESEARCH



WAG field applications

Not classified

% OOIP

Immiscible
18%

Miscible
79%

e

WAG

Not classified
Carbonate 5%
10%

Dolomite
20%
Sand
57%

Limestone
8%

Formation

uni Research

Average increased recovery

Miscible applications
Immiscible applications : 6.4 %

Not classified

. 5-10 o

Hydrocarbon
42%

- 9.7 %

CcOo2
47%

N2/Exhaust
3%

Gases injected in WAG

Average increased recovery : 5-10 % OOIP

CO, applications : 8 %
Hydrocarbon applications : 5 %

Carbonates / Dolomites have higher
average recovery than sandstones
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Gas based methods, example (O STATOIL

STATFJORD RECOMMENDED
FUTURE DRAINAGE STRATEGY

BRENT
RESERVOIR

Qil production

BRENT
EAST FLANK

WAG injection

W&G injection

Qil production

' .
Qil production WAG injection

STATFJORD
RESERVOIR
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Gas and water improving vertical sweep

Producer

Down-dip injection: Sweeping attic oil with gas

Injector
Y

Injection
sequence

-

time
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Gas and water improving vertical sweep

Injector

Up-dip injection: Sweeping cellar oil with wager

Producer

Injection
lsequence

>

time

,y)
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Stone - Jenkins

Calculation of extent of the WAG three-phase zone based on two-phase flow only

Statement: Jenkins analytical model underestimates the WAG three-phase zone
when compared to three-phase flow simulation results

injector producer
L
[he(x) G |
G+W h
hS \VY
hw(x)
LG '

BUT Som (3ph) << Sor (2 ph)
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WAG Model requirement

- Gas modeling

must include gas trapping

gas rel perm must be able to vary with:
- increasing / decreasing gas saturation
- water saturation

- gas trapping history

- Water modeling
water relative permeability must vary with:
- increasing/decreasing water saturation

- gas saturation

- Oil modeling
residual oil must be allowed to change with trapped gas
oil relative permeability should be history dependent

WAG Hysteresis model recommended (developed by Larsen and Skauge)
Available in ECLIPSE
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Immiscible WAG: mechanism -
redistribution

RED
- oil

BLUE
- water

WHITE/
YELLOW
- gas

Ogo=15 MN/m

.:?ﬁ:‘!"ﬂ } e 'Lk T !
network model micromodel micromode

first gas flood fifth gas flood
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WAG modelling
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uniResearch

1.loop

D\
s
WQPE g
"¢ International
TS
L)

Northern Norway Section

Larsen and Skauge, SPEJ
Skauge and Dale, SPE 111435
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Example - Extension of three-phase zone st Poducer

More detailed fluid flow description
Leads to: i
Larger three-phase zone Som << Sor

115% increase in three phase zone, 35% increase in recovery Skauge and Dale, SPE 111435

Case 1

only 2-phase rel perm

Case 2
P‘ 2-phase rel perm including Pc

Case 3
3-phase rel perm hysteresis and
gas trapping

Case 4

ase rel perm hysteresis and

gas trapping including Pc

Case 5

| 3-phase rel perm hysteresis and

gas trapping including Pc and the
effect of Pc on rel perms
IPR_
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Foam

«+Gas
Phase

Liquid
Phase

o

Foamer Water Gas
{Surfactant}

®_ Structured two phase,
compressible fluid

® Hexagonal foam texture

® |arge gas volume dispersed as
bubbles in a continuous liquid
phase

® Liquid film is stabilized by
surfactants to prevent bubble
coalescence

Y
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Foam Applications

Near the producer:

a) Gas coning.

b) Gas cusping.
c) Gas channelling in fractures

Foam blocking
a gas cone




Foam trials North Sea Area

Production well treatments Foam for mobility control
Oseberg Snorre
B-27 1994 Central Fault Block
B-38 1996 (P-25-P18A) 1997/98
Beryl Western Fault Block
B-30z 1994 (P32-P39)
1999/2000
Snorre
P-18 1996 Brage 1998
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Watérflood EOR
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Waterflooding EOR

® | ow salinity

® Hybrid EOR

® Surfactants (lower IFT)

® Polymer flooding (sweep ++)
® LPS (microscopic diverging)
® Diverging techniques

® MIOR

® and more

uni Research
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Conventional Chemical Methods for Enhanced
Oil Recovery

® Surfactants to lower the interfacial\tension
between the oil and water or change the
wettability of the rock

® \Water soluble polymetrs to increase the viscosity
of the water

® Polymer gelsfor blocking or diverting flow

® Combinations of chemicals and different
methods

uni Research
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How surfactant floods are applied in the field

1. Situation after some \ti&@é\%?waterﬂooding; S, and bypassed oil

, <,O(H ank formation
Inject
surfactant

solution
—

Jat ety

nn n

2. Inject aqueous surfactant solution - mobilise oil - form “oil bank”

uni Research
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How surfactant floods are applied in the field

Surfactant Growing oil bank 2
l slug Q>

Inject

viscous
polymer_ ||
solution

3. Post-flush with viscc@ymer solution for mobility control
l Poly(m@'r Surfactant  Oil bank -

%?Q slug

Inject low
u water

postflusm~

uni Research I PR
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Surfactant floods - frontal structure of oil bank

Note the profile of the oil saturation in 1D
P 0:\?)

Plolymer Surfactant &b;}ﬁk -
SHg slug

Inject low
u water

postflusm~

Surfactant
uni Research slug
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Classical Surfactant Enhanced Oil Recovery

® Surfactants has been used to lower the interfacial tension between
the oil and water and / or change the wettability of the rock

® Water soluble polymers to increase the viscosity of the water

® Alkaline chemicals such as/sodium carbonate to react with crude oll
and generate surface agctivity plus increase pH

® Combinations of chemicals and methods

MF - MPF - SF - SPF - LTPF - AF - APF - ASPF ..............

uni Research
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Conventional Surfactant Polymer (SP) Flooding
& Alkali (A) Flooding

 Surfactant + Cosurfactant (S): appliedito give a low o/w

IFT at some optimal salinity;
=> high Capillary Number

=> mobilises previously trapped oil — reduces Sor

* Polymer (P): viscosifies the injected brine and give mobility
control behind the jsurfactant slug

- Alkali (A): high pH alkali solution applied to cause soap
formation (saponification) with acids in oil — these “soaps”
reduce o/w IFT and cause reduced Sor

uni Research
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Alkali (A) Surfactant (S) Polymer (P) Flooding
ASP

KEY aspects of ASP flooding SHORT SUMMARY

1. In situ “soap” generation by Alkali + crude oil — natural surfactants
2. Appropriate phase behaviour.with: Crude/brine/’soap”+Surfactant

3. LOW IFTs with Crude/brine/’soap’+Surfactant — optimal salinity
affected by both [Surfactant] and [*Soap”]

4. LOWER surfactant Adsorption at higher pH

5. OTHER Reservoir Chemistry
- The CARBONATE/ALKALI System
- ION EXCHANGE with clays — mainly H*/Na* , Ca?* etc..
- MINERAL REACTIONS dissolution/precipitation

uni Research
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Surfactant Types

® Anionic surfactants preferred

® Low adsorption at neutral to high pH.on both sandstones and
carbonates

Can be tailored to a wide.range of conditions
Widely available at low cost in special cases
Sulfates for lowtemperature applications

Sulfonates for high temperature applications

Cationics can be used as co-surfactants

® Non-ionic surfactants have not performed as well for EOR
as anionic surfactants

uni Research
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| will argue why:

Conventional surfactant flooding never will become a widely used
EOR process for North Sea oil reservoirs

Statement:

Ultralow interfacial tensior is counteracted by poor flow properties
and high surfactantloss (retention)

The presentation will give evidence to this statement and indicate a
way forward

uni Research
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Some challenges related to field applications

® Finding a suitable surfactant (and polymer)

® [ow cost (polymer and surfactant)
Manageable logistics (polymer and surfactant)
Good injectivity (polymer)

Low adsorption /loss (polymer and surfactant)

Optimal phase behaviour at reservoir conditions (surfactant)

o <Salinity
o Temperature

0 Pressure

uni Research
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Classical Micellar Polymer Flooding

® Optimizing a surfactant flooding process is a compromise between

® Ultralow IFT

® |ow retention

® |Injectivity (solution properties)
® phase viscosity

Is it possible to haveigood solution properties at conditions where we
can achieve ultralow IFT?

Can we achieve low adsorption/retention at conditions where we can
achieve ultralow IFT?

uni Research
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Surfactants

Phase behaviour and IFT as functions of salinity

10
WII- COWII WII+
’g 1 ! !
S~ | |
2 o1 EOP/MEP 3 3
= ¢ o | "~ MEP/EWP
= | |
0,001 ! 1\ \1 | |
0 1 2 3 4 5 6 7 8 9 10
NaCl/wt %
S*
NaCl % 0 1 2 (‘3 4 5 !' 6 6,6 7 ' 8 9 10
Phase II- II- - - II- H- o m m I+ I+ I+
behaviour ] ¥ ]
IFT/(mN/m) 2,18 0,46 0,21 i 0,075 0,077 0,05 i i ~0,013 0,0015 ~0,006 E 0,013 0,023 0,061
' N :

Phase behaviour against heptane follows usual trends.
lI- phase behaviour gives low IFT near the three-phase region

EOP: excess oil phase
MEP: microemulsion phase




Correlation between solubility, retention and phase behaviour

|
NaCl : !
Wi% 0 1 2 : 3 ! 4 5 6 7 8 9 10
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, I I,,
|
Appearance = C C cC , C ' P R T P P P 0
|
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, TS o —
Activity 100 100 100 | IOOV: 79 97 100 08 98 98 11
1 I e
Retention : ‘u PSRN
(mg/g) 0,14 ei@g : S | 1,76
: I / . @4
IFT(mN/m) 2,18 04 ,g{ :0,075: 0,077 0,05 ;’ 0,0015*: 0,013 0,023 0,061
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, S E L WY R
Phase ' : ' !
behaviour :WII—: \WEI} ’/,’ WIII WII+ WII+ WII+
Lo *IFT at S* = 6.6
Alternative? Ultralow IFT, BUT

. r solution pr rti i i
Other use of surfactants for reducing IFT poor solution properties and high retention

may be more efficient and economical

than classical MPF or surfactant flooding IPR
‘RATED PETROLEUM RESEARCH




Polymers

Improving Vertical and Areal Sweep Efficiency:

by increasing water 1oo0.

viscosity using
polymers

Comparison of viscosities of [
50 4

three types of polymers in

1.0% NaCl at 74°F

Solution

VISCOSIty
(cp)

Xanthan - a biopolymer

HPAM - hydrolysed poly
acrylamide

HEC - hydroxy ethyl
‘ cellulose

od- Xanthan

. LOg-

30

20

0 |

Polymer concentration (ppm)
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Lessons Learned:

: : - . Higher initial water cut results in
Daqlng P°|ymer |I1]6Ct|0n Iovg\]ler incremental gains in

recovery (see figure to left)

$1.6-P342 . The total cost of polymer
12 flooding'($6.60/bbl inc. oil) is
L E— actually-less than for
S s | waterflooding ($7.85/bbl inc. oil)
: IO | Niers ¢ due to decreased water
: J e vemsss production and increased oil
: ] production.
I \‘? . More heterogeneous reservoir:
0

98 981 984 986 988 99 992 994 99%6.-99.8 - Iar.ge.r Increase In sweep
Initial water-cut (%) EffICIency
. 7 Relationship of incremental recovery by polvmer flood versus initial water-cut _ shorter respor.‘se ti me tO
polymer flooding

— strongest influence on
recovery is connectivity of

15

Project Description:

- Over 2000 wells now injecting pay zones
polymer at Daqing «  To obtain higher recovery with
« Typical slug size is 0.6 PV polymer flooding:
* Most well patterns are 5-spot — lower producer WHP
- about 30-50% of injected — stimulate producers
polymer is produced — increase polymer
 maximum produced polymer concentration
nc. is approx. 2/3 of injected —  increase polymer m
uni Research weight

CIPR - CENTRE FOR INTEGRATED PETROLEUM RESEARCH



Waterflooding at high adverse mobility ratio

pal:#;!‘rrg 1 08 :000°01 = *1l A poopy Ta1em FuTmp s123UT]  2MBL]

Mohanty et al 2012

0.14 PV 0.53 PV 2.3 PV
Skauge, A., Ormehaug, P:A., Gurholt, T., Vik, B., Bondino, I., and Hamon, G., 2-D Visualisation of Unstable Waterflood

and Polymer Flood for Displacement of Heavy Oil, SPE 154292, paper prepared for presentation at the
Eighteenth SPE Improved Oil Recovery Symp. Tulsa, 2012
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Water- and polymer flood of viscous oils

70

60

W
o
l

—e— E7000
—0— E2000

Oil Recovery (% OOIP

0 1 2 3 4 5 6 7 8 9
Injected Volume (PV)

Skauge, A., Ormehaug, P:A., Gurholt, T., Vik, B., Bondino, I., and Hamon, G., 2-D Visualisation of Unstable Waterflood
and Polymer Flood for Displacement of Heavy Oil, SPE 154292, paper prepared for presentation at the
Eighteenth SPE Improved Oil Recovery Symp. Tulsa, 2012
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Losal — Designer water — Smart water, etc
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Fig. 6 Incremental tertiary recovery (ASg) by low salinity waterflooding: {a] sandstones and (b) carbonates. Average of 17 outcrop
sandstones was 3.9%, for 11 reservoir sandstones was 11.1%, and 12.1% for literature data for reservoir cores or well tests. For
outcrop carbonates the average was 2.2% compared to 10.0% for reservoir carbunat&s

From Morrow et al paper SPE 154209, Tulsa 2012
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Low salinity waterflood

The key parameters or factors claimed to explain
low salinity mechanisms for sandstones are:

Multicomponent ion exchange
Double layer expansion

Fines migration

Wettability alteration
Microscopically diverted flow
Impact of alkaline flooding

pH driven wettability change

Plus about 20 other suggestions in the literature
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Low Salinity Simulation Approach: Eclipse
® Brine Tracking option

® Salinity can modify brine properties
® Low Salinity option

e Two sets of relative permeability and capillary
pressure curves

e F,andF, is weighting factor

K, :F1eri +(1_F1)kg
P.=FP:+(1-F,)P"

cij clj cij

uxesearch
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Sensitivity tests on the rel perm
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Surfactants

New combination of EOR methods

Low salinity waterflood may give only modest improved oil
recovery for many sandstone reservoirs

Cost of reducing water salinity may be a show stopper

Recent research has made a combined low salinity and
surfactant flooding a way of boosting oil recovery and
improve the economy of this EOR process

Source:

Alagic and Skauge (CIPR): “Change to Low Salinity Brine Injection in Combination with
Surfactant Flooding,” presented at 15th European Symposium on Improved Oil Recovery
— Paris, France, 27 — 29 April 2009
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Low Salinity Surfactant Flooding

® Surfactants targets the residual oil by-reducing IFT

® Advantages in low salinity environment

Combined effect (low'salinity effects at low IFT)
May reduce re-trapping of mobilized oil
Reduced adsorption / retention

More low cost surfactants available

uni Research
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UTCHEM Simulations: LS flood = LS surfactant flood

Relative permeability
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¢ Experimental Data

—— Best Fit LS-S flood on Core B2

¢

1st step LS flood

2nd step LS-S flood
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PV injected

Good simulation match
of production data

Skauge, A., Ghorbani, Z., and Delshad, M., Simulation of

Combined Low Salinity Brine and Surfactant Flooding, (Sub

ID: 9874), the EAGE IOR Symposium 12th — 14th April 2011

in Cambridge, UK.
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Surfactants

Advantage of the combined EOR methods

Low salinity reduces surfactant retention

The combined process can mobilize most of the oil in place in lab core
flood experiments

Low cost surfactants can be used at these salinities
Low sal surfactant

¢ Experimental Data —— Best Fit LS-S flood on Core B2

Oil Recovery [%]
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Low sal surfactant Polymer for heavy oil recovery

Oil Recovery [%]

¢ Experimental Data ——Best Fit LS-S flood on Core B2 . .. .
100 - Oil recovery from water and polymer injection
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Nano particles mechanisms sweep improvement, but also..

%\4« SEM photograph of CDG particles
Microscopic diversion —=

Water

Linked Polymer solutions

Spherical particles
Typical size 50-100 nm

Pre-generated particles;

1. Less likely to be adsorbed
2. Expect less chromatographic separation
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LPS in core flood

Sandstone reservoir core (fresh core), K=900 mD
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polymer (LPS)

particles
Aggregates
Polymer gel

o
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Coil
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LPS flooding in a glass model

Heterogeneous etched pores on glass plates

alass

gap

L: 625mm W: 100 mm Gap: 50-100 pum

Experiments show that water after LPS injection is following
new pathways and is mobilising bypassed oil
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After LPS injection water is contacting
Initially bypassed pores
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Way forward

We will see more advanced flood sequences...

® Polymer - new development and possibilities (Yes)
® |Low salinity (?)
® Classical surfactant flooding (?)

Hybrid EOR — YES

® |Low Salinity Surfactant — Low Salinity Polymer even LSASP
— Low Salinity Low Tension Gas - Nano particle polymers

® Foam/Polymer — Nano stabilized foam- Low Tension Gas —
WAG — Foam Assisted WAG (FAWAG) and more
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Thank you
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