EOR - **Introduction** Arne SkaugeCentre for Integrated Petroleum Research EOR fundamentals and toolbox **EOR - Introductiom C¹³**
Arne Skauge
e for Integrated Petroleum Rese
EOR fundamentals and toolbox
 $60^{10^{10^{10^{10^{10}}}}$

CIPR – CENTRE FOR INTEGRATED PETRO

Structure of presentationEOR basicsEOR experience North Sea reservoirs Gas injection EORWaterflood EORFor the second of the second the second side of the second second that the second second

Way forward

CIPR – CENTRE FOR INTEGRATED PETROLE

EOR basicsFOR basics
Force workshop asics

Recovery Mechanisms (conventional view)

Target Oil for EOR

Some definitions:

- **Primary oil recovery** is where the wells in a reservoir produce under the natural reservoir energy (pressure)
	- typical oil recovery from 1-10% of oil in place
- -**Secondary oil recovery** is where we inject water (nearly always) to displace the $oil = waterflooding$; same effect if strong aquifer drive **Force we are the wells in a**
 Force we have used to the natural reservoir energy
 Example:
 **Force we difference the oil = waterflooding; s

Provery from 15-60% of oil in play**
 Provery from 15-60% of oil in play
	- tynical oil racova typical oil recovery from 15-60% of oil in place
- -**Improved or Enhanced oil recovery** (EOR; IOR) is where we do something more advanced to obtain the oil left in the reservoir after secondary recovery

Trapped (residual) oil & Bypassed Oil: the targets for EORInject waterProduceoil+ Water**Trapped Oil** (10 -30%) **Bypassed Oil** (20 - 60%) Frapped 2013

Force Williams (2016

Force Williams (2016

Force Williams (2016)

Trapped Oil at the Pore Scale in a Rock

Rock grains $($ ~10 - 100 μ m) μ m) Rock pores (~0.1 - 100 μ m)

This is the capillarytrapped oil or **residual oil, Sor** … consider the *mechanism* of trapping

N.B. lengthscalesParticulary …

Rock pores ~0.1 - 100µm

trapped oil "ganglia" (or blobs)

 $$

Trapped Oil at the Pore Scale in a Rock:trapping by "snap-off"

Trapped Oil at the Pore Scale in a Rock:trapping by "snap-off"

- **- Surfactant - "soaps" lower** σ
- **- Inject gas (CH⁴, CO2 etc..) which can lower** σ **and do other things**

Residual oil mobilisation at increased Capillary No.

(After Morrow & Chatzis)

Sweep

Enhanced Oil Recovery (EOR)

EOR experience North Sea reservoirsExperience North Sea rese

Maximizing oil recovery for Norwegian oil and gas fields

Maximizing oil recovery for Norwegian oil and gas fields

Maximizing oil recovery for Norwegian oil and gas fields

Use solved challenges to activate EOR

Experience with field implementation of EOR

Surfactant

 Single Well Tracer Tests (Gullfaks, Oseberg) Surfactant Single Well Test (Gullfaks, Oseberg)Examples workshop 6-1 Nov 2013
Force workshop 6-7 Nov 2013
Montes Montes workshop

Other SWTT

Gas Single Well Tracer Test (implemented on Oseberg)

Low salinity SWTT(Heidrun, Snorre)

Conformance control (Gullfaks, Snorre, ++)

WAG(many fields)

Foam and FAWAG(Brage, Oseberg, Snorre, Veslefrikk, ++)

Gas injection EOR Force working 6-7 Nov 2013

Gas processes

- **Miscible gas**
-
-
- WAG
• Foam
• CO2 (EOR and sequestration) gas
DR and sequestration)
Force workshation

Multi-contact miscible gas injection

Viscous fingering

Gas and water improving vertical sweep

Stone - Jenkins

Calculation of extent of the WAG three-phase zone based on two-phase flow only

Statement: Jenkins analytical model *underestimates* the WAG three-phase zone when compared to three-phase flow simulation results ϵ

WAG Model requirement

- Gas modeling

must include gas trappinggas rel perm must be able to vary with:
- increasing / decreasing gas saturation

- increasing / decreasing gas saturation
- water saturation
- water saturation
- gas tranning hist
- gas trapping history

- Water modeling

water relative permeability must vary with:

- increasing/decreasing water saturation
- gas saturation
- gas saturation

- Oil modeling

residual oil must be allowed to change with trapped gas oil relative permeability should be history dependent

WAG Hysteresis model recommended (developed by Larsen and Skauge)Available in ECLIPSE

Immiscible WAG: mechanism redistribution

Foam

Foamer Water

(Surfactant)

uni Research

Gas

- Structured two phase, compressible fluid
- **Hexagonal foam texture**
- \bullet Large gas volume dispersed as bubbles in a continuous liquid phase
- Liquid film is stabilized by surfactants to prevent bubble coalescence

Foam Applications

- a) Gas coning.
- b) Gas cusping.
- c) Gas channelling in fracturesFoam blockinga gas cone

Foam trials North Sea Area

Waterflood EORForce workerflood EOR

Waterflooding EOR

- **CLOW salinity**
- Hybrid EOR
- **Surfactants (lower IFT)** $770^{120^{13}}$
- Polymer flooding (sweep ++)
- **LPS** (microscopic diverging)
- Diverging techniques
- MIOR
- and more

Conventional Chemical Methods for Enhanced Oil Recovery

- Surfactants to lower the interfacial tension between the oil and water or change the wettability of the rock ■ Surfactants to lower the interfacial densition
between the oil and water or change the
wettability of the rock

■ Water soluble polymers to increase the visit

of the water

■ Polymer gels for blocking or diverting flow
- Water soluble polymers to increase the viscosity of the water
-
- Combinations of chemicals and different mothods methods

How surfactant floods are applied in the field

How surfactant floods are applied in the field

CIPR – CENTRE FOR INTEGRATED PETROLEUM RESEARCH \overline{H} 44

Surfactant floods - frontal structure of oil bank

Classical Surfactant Enhanced Oil Recovery

- \bullet Surfactants has been used to lower the interfacial tension between the oil and water and / or change the wettability of the rock
- Water soluble polymers to increase the viscosity of the water
- \bullet Alkaline chemicals such as sodium carbonate to react with crude oil and generate surface activity plus increase pHas been used to lower the interfacial te
ter and / or change the wettability of th
polymers to increase the viscosity of t
icals such as sodium carbonate to rea
surface activity plus increase pH
of chemicals and methods
- \bullet Combinations of chemicals and methods
- MF MPF SF SPF LTPF AF APF ASPF …………..

Conventional Surfactant Polymer (SP) Flooding& Alkali (A) Flooding

- **Surfactant + Cosurfactant (S):** applied to give a low o/w
- IFT at some optimal salinity; => high Capillary Number => mobilises previously trapped oil – reduces Sor**Cosurfactant (S):** applied to giptimal salinity;
pillary Number
es previously trapped oil – reduc
viscosifies the injected brine and the surfactant slug
- **Polymer (P):** viscosifies the injected brine and give mobility control behind the surfactant slug
- **Alkali (A):** high pH alkali solution applied to cause "soap" formation (saponification) with acids in oil – these "soaps" reduce o/w IFT and cause reduced Sor

Alkali (A) Surfactant (S) Polymer (P) FloodingASP

KEY aspects of ASP flooding SHORT SUMMARY

- 1. In situ "soap" generation by Alkali + crude oil natural surfactants
- 2. Appropriate phase behaviour with Crude/brine/"soap"+Surfactant
- 3. LOW IFTs with Crude/brine/"soap"+Surfactant – optimal salinity affected by both [Surfactant] and ["Soap"] of ASP flooding SHORT SUMM
generation by Alkali + crude oil – natur
nase behaviour with Crude/brine/"soap
Crude/brine/"soap"+Surfactant – optin
th [Surfactant] and ["Soap"]
- 4. LOWER surfactant Adsorption at higher pH
- 5. OTHER Reservoir Chemistry
	- **The CARBONATE/ALKALI System**
	- **- ION EXCHANGE with clays – mainly H+/Na+ , Ca2+ etc..**
	- **- MINERAL REACTIONS dissolution/precipitation**

Surfactant Types

- Anionic surfactants preferred
- \bullet Low adsorption at neutral to high pH on both sandstones and carbonatesFactants preferred

Supprison at neutral to high pH on both sales

ailored to a wide range of conditions

vailable at low cost in special cases

for low temperature applications
	- \bullet Can be tailored to a wide range of conditions
	- \bullet Widely available at low cost in special cases
	- \bullet Sulfates for low temperature applications
	- \bullet Sulfonates for high temperature applications
	- \bullet Cationics can be used as co-surfactants
- Non-ionic surfactants have not performed as well for EOR as anionic surfactants

I will argue why:

Conventional surfactant flooding never will become a widely used EOR process for North Sea oil reservoirs

Statement:

Ultralow interfacial tension is counteracted by poor flow properties and high surfactant loss (retention)For Morth Sea oil reservoirs

For North Sea oil reservoirs

Examples to the counteracted by poor

factant loss (retention)

Software and the statement

The presentation will give evidence to this statement and indicate a way forward

Some challenges related to field applications

- \bullet Finding a suitable surfactant (and polymer)
	- \bullet Low cost (polymer and surfactant)
	- \bullet Manageable logistics (polymer and surfactant)
	- \bullet Good injectivity (polymer)
	- \bullet Low adsorption *Aloss* (polymer and surfactant)
- \bullet Optimal phase behaviour at reservoir conditions (surfactant) suitable surfactant (and polymer)

cost (polymer and surfactant)

inageable logistics (polymer and surfactant)

d injectivity (polymer)

d adsorption (Joss (polymer and surfactant)

mal phase behaviour at reservoir conditi
	- o**Salinity**
	- o**Temperature**
	- oPressure

Classical Micellar Polymer Flooding

- **•** Optimizing a surfactant flooding process is a compromise between \bullet 6.1A^{6}
- \bullet Ultralow IFT
- \bullet Low retention
- \bullet Injectivity (solution properties)
- \bullet phase viscosity

Is it possible to have good solution properties at conditions where we can achieve ultralow IFT?

Can we achieve low adsorption/retention at conditions where we can achieve ultralow IFT?

Phase behaviour and IFT as functions of salinity

Phase behaviour against heptane follows usual trends. II- phase behaviour gives low IFT near the three-phase region

EOP: excess oil phaseMEP: microemulsion phase

Correlation between solubility, retention and phase behaviour

CIPR – CENTRE FOR INTEGRATED PETROLEUM RESEARCH

Daqing Polymer Injection

Project Description:

- **Over 2000 wells now injecting** •**polymer at Daqing**
- **Typical slug size is 0.6 PV**•
- **Most well patterns are 5-spot** •
- • **about 30-50% of injected polymer is produced**
- **maximum produced polymer** •**conc. is approx. 2/3 of injecteduni** Research

Lessons Learned:

- • **Higher initial water cut results in lower incremental gains in recovery (see figure to left)**
- **The total cost of polymer**
flooding (\$6.60/bbl inc. oil) is •**actually less than for waterflooding (\$7.85/bbl inc. oil) due to decreased water**
	- **production and increased oil production.**

More heterogeneous reservoir:

- **larger increase in sweep efficiency**
- **shorter response time to polymer flooding**
- **strongest influence on recovery is connectivity of pay zones**
- **To obtain higher recovery with** •**polymer flooding:**
	- **lower producer WHP**
	- **stimulate producers**
	- **increase polymer concentration**
	- *<u>increase</u>* polymer molecular r **weight**

•

Waterflooding at high adverse mobility ratio

Skauge, A., Ormehaug, P:A., Gurholt, T., Vik, B., Bondino, I., and Hamon, G., 2-D Visualisation of Unstable Waterfloodand Polymer Flood for Displacement of Heavy Oil, SPE 154292, paper prepared for presentation at the Eighteenth SPE Improved Oil Recovery Symp. Tulsa, 2012

Skauge, A., Ormehaug, P:A., Gurholt, T., Vik, B., Bondino, I., and Hamon, G., 2-D Visualisation of Unstable Waterfloodand Polymer Flood for Displacement of Heavy Oil, SPE 154292, paper prepared for presentation at the Eighteenth SPE Improved Oil Recovery Symp. Tulsa, 2012

Losal – Designer water – Smart water, etc

Fig. 6 Incremental tertiary recovery (ΔS_{ot}) by low salinity waterflooding: (a) sandstones and (b) carbonates. Average of 17 outcrop sandstones was 3.9%, for 11 reservoir sandstones was 11.1%, and 12.1% for literature data for reservoir cores or well tests. For outcrop carbonates the average was 2.2% compared to 10.0% for reservoir carbonates.

From Morrow et al paper SPE 154209, Tulsa 2012

Low salinity waterflood

The key parameters or factors claimed to explain low salinity mechanisms for sandstones are:

Multicomponent ion exchangeDouble layer expansionFines migration Wettability alteration Microscopically diverted flowImpact of alkaline flooding pH driven wettability changeThere's or factors claimed to explie
echanisms for sandstones are:
nt ion exchange
expansion
n
ration No^{rkShOR}
y diverted flow
fine flooding

Plus about 20 other suggestions in the literature

Low Salinity Simulation Approach: Eclipse

- \bullet *Brine Tracking* **option**
	- \bullet **Salinity can modify brine properties**
- \bullet *Low Salinity* **option**
- • Two sets of relative permeability and capillary pressure curvesForce workshop 6-7 Nov 2013
	- F_1 and F_2 is wei \bullet $_1$ and F 2 $_2$ is weighting factor

$$
k_{ri} = F_1 k_{ri}^L + (1 - F_1) k_{ri}^H
$$

$$
P_{cij} = F_2 P_{cij}^L + (1 - F_2) P_{cij}^H
$$

CIPR – CENTRE FOR INTEGRATE

CIPR – CENTRE FOR INTEGRATED PETROLEUM RESEARCH

uni Research

New combination of EOR methods

Low salinity waterflood may give only modest improved oil recovery for many sandstone reservoirs

Cost of reducing water salinity may be a show stopper

Recent research has made a combined low salinity and surfactant flooding a way of boosting oil recovery and improve the economy of this EOR process defilood may give only modes
any sandstone reservoirs
ig water salinity may be a shot
the has made a combined low s
ding a way of boosting oil reco
pnomy of this EOR process

Source:

 Alagic and Skauge (CIPR): "Change to Low Salinity Brine Injection in Combination with Surfactant Flooding," presented at 15th European Symposium on Improved Oil Recovery — Paris, France, 27 – 29 April 2009

Low Salinity Surfactant Flooding

- \bullet **•** Surfactants targets the residual oil by reducing IFT argets the residual oil by redu

n low salinity environment

deffect (low salinity effects at low I

deffect (low salinity effects at low I

definity of mobilized oil

definity retention
- \bullet Advantages in low salinity environment
	- \bullet Combined effect (low salinity effects at low IFT)
	- \bullet May reduce re-trapping of mobilized oil
	- \bullet Reduced adsorption / retention
	- \bullet More low cost surfactants available

UTCHEM Simulations: LS flood LS surfactant flood

Surfactants

Advantage of the combined EOR methods

Low salinity reduces surfactant retention

The combined process can mobilize most of the oil in place in lab core flood experiments

Low cost surfactants can be used at these salinities

Low sal surfactant

Nano particles mechanisms sweep improvement, but also..

LPS in core flood Sandstone reservoir core (fresh core), K=900 mD

Intra-molecular aggregate is preferred

LPS flooding in a glass model

L: **625 mm W**: **100 mm** Gap: 50-100 µm

Experiments show that water after LPS injection is following new pathways and is mobilising bypassed oil

Waterflooding at adverse mobility ratio

After LPS injection water is contacting Initially bypassed pores

Way forward

We will see more advanced flood sequences.

- Polymer new development and possibilities (Yes) For a divanced flood sequences...
w development and possibilities
?)
factant flooding (?)
ES^(Ce)
- Low salinity (?)
- **Classical surfactant flooding (?)**

Hybrid EOR – **YES**

- Low Salinity Surfactant Low Salinity Polymer even LSASP Low Salinity Low Tension Gas - Nano particle polymers
- Foam/Polymer Nano stabilized foam- Low Tension Gas –
MAG Foam Assisted WAG (FAWAG) and more WAG – Foam Assisted WAG (FAWAG) and more…..

CIPR – CENTRE FOR INTEGRATED PETROLEUM RESEARCH