

Preferred partner

Value creation through innovation

CCS – Capture Technology, Facilities, Process & Market issues

Oscar Fr. Graff, CTO

FORCE - EOR Seminar Stavanger, 7th November 2013

© 2012 Aker Solutions

Presentation - Highlights

- Background: Global warming, IEA outlook, EOR Nov 2013
- Technology overview:
 - Alternatives
 - Aker Solutions н.
- Aker Solutions activities (present & past): und workshop
 - R&D
 - Pilots
- Market today
 - Norway
 - Abroad
- TCM short movie
- Q&A

400 ppm

On May 9 this year, the daily mean concentration of carbon dioxide in the atmosphere of Mauna Loa, one of the volcanoes on the Big Island of Hawaii, surpassed 400 parts per million for the first time since measurements began in 1958, when CO2 concentrations averaged 318 ppm.

More extreme weather 1

More extreme weather 2

New term in Norwegian: "monster regn"

© 2012 Aker Solutions

Preferred partner

To meet +2 °C in 2050, CCS can contribute with about 1/5 of the total required CO2 reductions (IEA)

CCS= Carbon Capture and Storage

Status of CCS projects

State / District	Country	Volume CO ₂	Operation Date	Facility Details	Capture Type	Transport Length	Transport Type	Storage Type	Project URL
Texas	UNITED STATES	8.4 Mtpa	2010	Natural Gas Processing	Pre-Combustion (Gas Processing)	256 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.oxy.com/
Oklahoma	UNITED STATES	0.68 Mtpa	1982	Fertiliser Production	Pre-Combustion	225 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.kochfertillizer.com/
Saskatchewan	CANADA	3 Mtpa	2000	Synthetic Natural Gas	Pre-Combustion	315 km	Onshore to on- shore pipeline	Enhanded OII Recovery	http://www.cenovus.com/
Wilaya de Ouargla	ALGERIA	1 Mtpa	2004	Natural Gas Processing	Pre-Combustion (Gas Processing)	14 km	Onshore to on- shore pipeline	Onshore Deep Saline Formations	http://www.insalahco2.com/
Wyoming	UNITED STATES	7 Mtpa	1986	Natural Gas Processing	Pre-Combustion (Gas Processing)	190 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.exxonmobil.com
North Sea	NORWAY	1 Mtpa	1996	Natural Gas Processing	Pre-Combustion (Gas Processing)	0 km	Direct injection	Offshore Deep Saline Formations	http://www.statoil.com/en/
Barents Sea	NORWAY	0.7 Mtpa	2008	Natural Gas Processing	Pre-Combustion (Gas Processing)	152 km	Onshore to offshore pipeline	Offshore Deep Saline Formations	http://www.statoil.com/en/
Texas	UNITED STATES	1.3 Mtpa	1972	Natural Gas Processing	Pre-Combustion (Gas Processing)	132 km	Onshore to on- shore pipeline	Enhanced OI Recovery	http://www.exxonmobil.com/
Texas	UNITED STATES	1 Mtpa	2013	Hydrogen Production	Post-Combustion	101 – 150 km	Onshore to on- shore pipeline	Enhanced Of Recovery	http://www.airproducts.com/
Alberta	CANADA	Up to 0.59 Mtpa (initially 0.29 Mtpa)	2014	Fertiliser Production	Pre-Combustion	240 km	Onshore to on- shore pipeline	Enhanced OII Recovery	http://www.agrium.com/
Alberta	CANADA	1.2 Mtpa	2015	Oil Refining	Pre-Combustion	240 km	Onshore to on- shore pipeline	Enhanced OI Recovery	http://www.northwestupgradin g.com/
Saskatchewan	CANADA	1 Mtpa	2014	Power Generation	Post-Combustion	100 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.saskpower.com/
Western Australia	AUSTRALIA	3.4 - 4.1 Mtpa	2015	Natural Gas Processing	Pre-Combustion (Gas Processing)	7 km	Onshore to on- shore pipeline	Onshore Deep Saline Formations	http://www.chevronaustralia.c om/
Illinois	UNITED STATES	1 Mtpa	2013	Chemical Production	Industrial Separation	1.6 km	Onshore to on- shore pipeline	Onshore Deep Saline Formations	http://www.adm.com/
Mississippi	UNITED STATES	3.5 Mtpa	2014	Power Generation	Pre-Combustion	75 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.mississippipower.c om/
Wyoming	UNITED STATES	1 Mtpa	2013	Natural Gas Processing	Pre-Combustion (Gas Processing)	Not specified	Onshore to on- shore pipeline	Enhanced OI Recovery	http://www.conocophillips.com /
Alberta	CANADA	1.08 Mtpa	2015	Hydrogen Production	Pre-Combustion	84 km	Onshore to on- shore pipeline	Onshore Deep Saline Formations	http://www.shell.ca/
Kansas	UNITED STATES	0.85 Mtpa	2013	Fertiliser Production	Pre-Combustion	112 km	Onshore to on- shore pipeline	Enhanced Oil Recovery	http://www.cvrenergy.com/
							Sept - Oct 2	2013 - carbon	capture journal 29

Carbon Capture Journal: 12 EOR projects (in USA & Canada) out of 18 identified CCS projects globally

Sleipner Snøhvit

EOR is a commercial driver for CCS projects

EOR – Potential in the Middle East

Confidential © 2012 Aker Solutions

Alternative processes for CC & CO2 production

Aker Solutions – Amine Post Combustion Process

Strategy:

Technology license and key equipment package

Main differences between gas sweetening and CCS?

	CA
Gas sweetening	CCS 20
High pressure – low volumes	Low pressure – large volumes
Compact equipment and piping	Large equipment and piping/ducts
No oxygen – no oxidation	High oxygen – high oxidation
Limited impurities and a. degradation	SO2, NOx, ashes = a. degradation
Limited pre-treatment of gas	Pre-treatment required
CO2 at high pressure	CO2 at atmospheric pressure
Treated gas to consumer	Treated gas to atmosphere
	<u>CO2 content in flue gas (vol-%):</u> Gas power= 3 Coal power= 12-15

Cement industry= 20

0

What is an amine? How much CO_2 can be absorbed in 1 liter amine solution?

Increased focus on Aker Solutions' oil & gas clients - EOR

Aker Solutions partner in substantial R&D&Q programmes:

Total Projects = ~ €110M (~750 mill. NOK)

SOLVit – main objectives

 Develop and demonstrate solvents with minimum energy consumption and lowest possible environmental impact. This is done step-wise and systematic:

Develop demonstration program to transfer experimental data to **cost-effective process and plant design**

Trondheim: Two test pilots for SOLVit

Gløshaugen Pilot

SINTEF

NTNU NO

Official opening: 29. April 2010

Flue gas: from propane burner

- CO₂ content: 2-14 vol%
- Absorber diameter: 0.2 m
- Extensive monitoring
- Access via 11 floors
- Laboratory facilities
- Several SOLVit campaigns

Tiller Pilot

Several test campaigns at EnBW's pilot plant in Heilbronn, Germany Part of SOLVit Phase 2 & 3 testing

Slide 20

SOLVit - Sintef & Aker Solutions - *Summary & Achievements*

Main Target:

- 35 % reduction in energy consumption
- Minimum HSE impact

SOLVit Phase 3 (2013-2015): 27 mth's Main Targets:

50 % reduction in one

- 50 % reduction in energy consumption
- Demonstrate 3rd generation system

Aker Solutions has measured extremely low amine emissions at TCM - ACC's innovative emission control system

Mobile Carbon Capture Facility

- Safe operation
- Easy transport & h-up
- Standard container
- Lorry & ship transport
- Industrial flue gases
- Amine flexibility
- Verify design data
- Verify solvent
- Long term testing
- Easy modifications
- Extensive monitoring & analysis

- L= 40 ft, H= 2.6 m
- Weight= 22 tonnes
- Capacities:
 - Flue Gas: 1000 Am3/h
 - CO₂ capture:
 - Coal Power: 180 kg/h
 - Gas Power: 60 kg/h
 - Composition: 3 -14 %
 - Rate: ~ 85 90 %

Testing with clients actual flue gas at their site MTU – Mobile Test Unit – a complete capture plant in 2008

MTU, Mobile Test Unit - Advanced CO₂ capture pilot Test campaigns in industrial environment since 2008

Confidential © 2012 Aker Solutions Slide 26

part of Aker

Flexible amine plant (start up August 2012) CO₂ Technology Centre Mongstad – TCM

- ACC has designed and built the world's most advanced CO₂ amine capture plant
- Mechanical Complete July 2011
- ACC actively involved in commissioning, start-up and performance test
- ACC shall test proprietary amines during 15 month's
- ACC shall test in MTU in parallel

Owners TCM DA:

- Gassnova
- Statoil
- Sasol
- Shell

CO₂ Technology Center Mongstad – amine plant Construction method

Construction of ACC Absorber Tower:

- Completed in 20 days
- 3.5 x 2 x 62 m
- Concrete w/liner (new liner with Norner)
- Slip-form construction

Plant construction method:

- Modularization of Pre-Assembled Units (PAU) and prefabrication
- Construction of auxiliary and piperack
 (PAR) at Kvaerner Stord, transport to Mongstad and installed

Delivered on time!

Carbon Capture Mongstad Project – CCM

- Gas fired CHP plant 3.3 vol. % of CO₂
- Full-scale capture, transport and storage of 1.2 M TPA CO₂
- Aker Solutions involved in several Technology Qualification Programmes and Conceptual Engineering
- About 50 engineers have been engaged

Norway has been a front runner within CCS for over 20 years

,2013

- CO2 tax (1991)
- CO2 injection at Sleipner (1996)
- Klimatek, R&D programme, Forskningsrådet (1997) 6-7 NOV
- CLIMIT, R&D, projects & 40 PhD (2005)
- Gassnova, pilot & demo (2005)
- Mongstaagreement (2006):
 - Stage 1: Technology Centre (TCM)
 - Stage 2: Full-scale demo (CCM)
- Aker Clean Carbon AS, ACC (2007), now Aker Solutions
- Mobilt Test Unit (MTU), Aker Solutions (2008)
- Tiller R&D pilot, SINTEF (2010)
- Opening TCM (2012):
 - Amin plant (Aker Solutions)
 - Chilled ammonia (Alstom)
- Developed considerable CCS competence in Norway; capture and storage

20.09.2013: Termination of Mongstad full-scale plant (stage 2)

Klimaforliket in Stortinget: Full-scale CCS within 2020

CCS prospects in Norway 2013

Norway - Norcem Industrial client - Cement plant

Scope: CO₂ capture for Cement plant – first time world wide

Long term relationship with Norcem:

- Cooperation agreement in 2011
- Concept study and a Pre-engineering Study in 2012
- Contract for long term use of ACC MTU at Brevik from 2013 to 2014, incl. solvent development program
- Supported by the European Cement Research Academy (ECRA) and Climit
- ECRA members (40 cement companies in Europe) have chosen Norcem Brevik as its site for CO₂ capture test projects.

Svalbard CCS

- Gassnova is asked by the parliament to investigate CCS at Svalbard.
- The existing coal fired power station is more than 30 years old, is unreliable and has too high emissions of soot, NOx and SOx
- The proposed activities will have a positive effect for Svalbard and the Norwegian CCS industry.
- Aker Solutions has been involved in the early evaluations.
- The size of the capture plant will be similar to TCM

The Kårstø full scale CCS project (2010)

- Capture of ~1,1 Mtonnes CO₂/year*
 - From Naturkraft gas fired power plant (~430 MW)
 - Post-combustion amine based capture process
- Pipeline transport to the Norwegian Continental Shelf for subsea storage
 - 240 km 12" pipeline
 - Geological storage in the Utsira formation, in the vicinity of the Draupner platform
- Project technically matured for an investment decision
 - Procurement process put on hold, due to uncertainties related to the operating pattern of the gas fired power plant
- CAPEX for capture, transport and storage ~10,4 BNOK

*: Assuming 8000 hrs annual operation

Transport and storage solution for the Kårstø CCS project

Example; gas fired power plant and CO₂ capture plant www.gassnova.no www.gassnova.no

© 2012 Aker Solutions

1st Full-scale CCS plant in the world. **Coal power plant & EOR, Boundary Dam, Canada**

SaskPower Integrated CCS Demonstration Project SNC-Lavalin Scope and Status NON

Project Status:

- Carbon Capture Plant FEED completed in 2009 (Competitive FEEDs)
- Start of detailed design: February 2010
- Start of construction : May 2011
- Mechanical completion: July 2013
- Hot commissioning and start-up completion: December, 2013
- Commercial operation: Q1, 2014

Aker Solutions

A global supplier of cost-effective CO₂ capture plants and technology

Ownership: Aker Solutions (100%)

Office: Oslo, Norway

- A focused technology development
 - 20 years of CCS know-how and experience acquired via Aker projects
 - Core competence within flue gas treatment and CO₂ capture
 - Invested €50M in technology, leading one of the largest R&D programmes in Europe (SOLVit)
 - Operating a unique, advanced mobile test unit (MTU), engaged in several CCS projects.
 - 25 persons in ACC and about 300 employees in Aker have been engaged in CCS
 - License with delivery of key equipment
- Aker Solutions' step by step business approach:

NTNU/SINTEF lab rig Slei

Sleipner field

Kårstø CO₂ pilot

Kårstø demo study

Mobile Test Unit

Large scale pilot in operation

Contact details

wikshop 6-7 Nov 2013 Oscar Fr. Graff Chief Technology Officer, CCS

Snarøyveien 20

1360 Fornebu

NORWAY

Postal address: PO Box 18, 1324 Lysaker, Norway +47 67 51 36 17 Phone:

E-mail: Oscar.Graff@akersolutions.com

www.akercleancarbon.com www.akersolutions.com

Copyright and disclaimer

Copyright

Copyright of all published material including photographs, drawings and images in this document remains vested in Aker Solutions and third party contributors as appropriate. Accordingly, neither the whole nor any part of this document shall be reproduced in any form nor used in any manner without express prior permission and applicable acknowledgements. No trademark, copyright or other notice shall be altered or removed from any reproduction. NON

Disclaimer

This Presentation includes and is based, inter alia, on forward-looking information and statements that are subject to risks and uncertainties that could cause actual results to differ. These statements and this Presentation are based on current expectations. estimates and projections about global economic conditions, the economic conditions of the regions and industries that are major markets for Aker Solutions ASA and Aker Solutions ASA's (including subsidiaries and affiliates) lines of business. These expectations, estimates and projections are generally identifiable by statements containing words such as "expects", "believes", "estimates" or similar expressions. Important factors that could cause actual results to differ materially from those expectations include, among others, economic and market conditions in the geographic areas and industries that are or will be major markets for Aker Solutions' businesses, oil prices, market acceptance of new products and services, changes in governmental regulations, interest rates, fluctuations in currency exchange rates and such other factors as may be discussed from time to time in the Presentation. Although Aker Solutions ASA believes that its expectations and the Presentation are based upon reasonable assumptions, it can give no assurance that those expectations will be achieved or that the actual results will be as set out in the Presentation. Aker Solutions ASA is making no representation or warranty. expressed or implied, as to the accuracy, reliability or completeness of the Presentation, and neither Aker Solutions ASA nor any of its directors, officers or employees will have any liability to you or any other persons resulting from your use.

Aker Solutions consists of many legally independent entities, constituting their own separate identities. Aker Solutions is used as the common brand or trade mark for most of these entities. In this presentation we may sometimes use "Aker Solutions". "we" or "us" when we refer to Aker Solutions companies in general or where no useful purpose is served by identifying any particular Aker Solutions company.

