

Polymer Flooding - Field Development Projects in Statoil

6th. November 2013

Dag Chun Standnes

Leading advisor Advanced Recovery Methods

iternal 2013-10-31

Outline

- Field development projects
- The gain of applying polymer technology
 EOR qualification steps
 Hurdles and the

 - Hurdles and important tasks
- Example
 - Polymer injection test at Heidrun field

Ongoing Polymer flooding development projects in Statoil

Oil recovery improvement by polymer injection

$$M = \frac{\lambda_w}{\lambda_o} = \frac{\mu_o k_{rw}^*}{\mu_w k_{ro}^*} 2^{3}$$

- Fluid systems where M > 1 (water has higher mobility than oil):
 - Improve the microscopic sweep efficiency (reduced fractional flow of water) without altering the residual oil saturation
 - Reduce viscous fingering
 - Improve macroscopic sweep efficiency if severe reservoir heterogeneities exists
- Fluid systems where M ~ 1 (approximately equal mobility for both water and oil)
 - Improve the macroscopic sweep efficiency if significant reservoir heterogeneity exists

Theory of polymer flooding

- Fluid systems where M > 1
 - (water has higher mobility than oil):
 - Accelerate the microscopic sweep efficiency (reduced fractional flow of water)
 - Reduce viscous fingering
 - Improve macroscopic sweep efficiency if severe reservoir heterogeneities exists

Randy Seright's Homepage

M > 1: UNFAVORABLE

Theoretical gain of oil at 0.8 watercut for waterflooding vs. 5 cp polymerflooding is 15 %

EFFECT OF MOBILITY RATIO (M) ON VERTICAL SWEEP EFFICIENCY

M < 1: FAVORABLE

Theory of polymer flooding cont.

- 10×2013 • Fluid systems where M ~ 1 (no viscous fingering):
 - Improve the macroscopic sweep efficiency if

significant reservoir heterogeneity exists

Layers with strong contrast in permeability

Building a toolbox for offshore EOR

Polymers for enhanced oil recovery

- Purpose: Increase the viscosity of water used in waterflooding
- Two main classes used for polymer flooding:
 - HPAM (Hydrolyzed polyacrylamide)
 - Biopolymers (Xanthan)

Requirements for EOR polymers

- High viscosity under reservoir conditions?
- Good solubility and filterability (injectivity)
- Stable during injection and in the reservoir (no loss of viscosity)
- Compatible with injection chemicals
- Environmentally acceptable (green)
- Minor impact on the oil-water separation process

HPAM

- Synthetic polymer
- High molecular weight, 2 20 million Dalton
- High viscosity at low concentration
- Sensitive to temperature, salinity and hardness
- "Cheap"
- More than 90 % of polymer floods performed with HPAM

Polymer flooding – Improvement options (desalination of injection water)

Biopolymers - Xanthan

- NOV 2013 • High molecular weight: 2 – 50 million Dalton
- High resistance to temperature
- Less sensitive to salinity and hardness
- Very sensitive to bacterial degradation Need for biocide
- Expensive

Polymer: Stability under injection and in the reservoir

- Chemical degradation: Hydrolysis, oxidation
- Mechanical degradation: Breakdown at high rate, shear
- Biological degradation: Bacterial degradation (not a problem at high temperatures)
- Salinity: Precipitation and flocculation in reaction with mono- and divalentions (Na⁺, Ca²⁺, Mg²⁺,...)
- Temperature: HPAM degrades at ≤ 80 °C, Xanthan at ≤ 90 °C

Additional polymer injection issues

- · Logistics and mixing offshore
- Compatibility with other injection chemicals
- Shear during injection to minimize Kshop degradation
- Production challenges
 - Interference of polymer with oil and production chemicals
- HSE issues
 - Polymer breakthrough in producers
 - No discharge of HPAM to sea (re-injection of produced water)
 - Water management (cleaning of produced water)

SPE Annual Technical Conference and Exhibition 30 September – 2 October » Ernest N. Morial Convention Center » New Orleans, Louisiana, USA

> SPE 166343 Offshore Polymer/LPS Injectivity Test with Focus on Operational Feasibility and Near

Wellbore Response in a Heidrun Injector

Olav M. Selle, Herbert Fischer, **Dag C. Standnes**, Inge H. Auflem, Anne Marie Lambertsen, and Per Einar Svela, Statoil

Amare Mebratu, Elisabeth B. Gundersen, and Ingrid Melien, Halliburton

OUTLINE

- Logistics and operations
- Sampling and analysis program
- **Results**
- Conclusions

Kjetil Alsvik / Statoil

HEIDRUN

- Discovered 1985, on production since 1995, • life time 2045
- Floating tension leg platform + subsea tie-ins •
- Water injection: SW, SRP, PWRD •
- Planned for 56 well slots + 5 tie-ins •
- Oil in place 432 MSm³ (2 717 Mbbl)
- Reserves: 177 MSm³ (1 113 Mbbl) oil + gas •
- Recovery factors in the range of 10 % to 60 % •
- Polymer or linked polymer solution (LPS) injection could • increase oil recovery on Heidrun

Heidrun •

rondheim

OBJECTIVES POLYMER AND LPS INJECTION TEST

- Objective I
 - Determine logistical and operational feasibility of polymer/LPS injection
 - Transport, Mixing, Storage, Pumping
- Objective II
 - Observe reservoir and near well bore response
 - Pressures and temperatures versus polymer loading and injection rates

HOW POLYMERS IMPROVE OIL RECOVERY

- Polymer
- ,2013 Hydrolysed polyacrylamide (HPAM)
 - Mobility improvement: Polymer increases viscosity of injected water from 0.38 cp to ~ 2.0 cp - much closer to reservoir oil viscosity (2 - 4 cp)
- Linked polymer solution (LPS)
 - LPS is HPAM cross linked with aluminium to form nano-sized particles
 - *Diversion:* Nano-sized LPS particles can block water "channels" in the reservoir and divert flow to non-swept areas
 - Mobility improvement: As for HPAM

HSE DATA POLYMER AND CROSS-LINKER

- Polymer •
- 10v 2013 Hydrolysed polyacrylamide (HPAM)
 Health: Green, Safety: Green, Environment: Red*)
 - Material is very slippery when wet -e workshi
- **Cross-linker**
 - Aluminum Citrate
 - Health: Green, Safety: Green, Environment: Green

*) Approval from Norwegian Pollution Control Authority to inject max. 3 600 kg HPAM classified as red chemical in a Heidrun water injector during 2010

YARD TEST AT ULLRIGG, STAVANGER, AUG. 2008

- Objective:
 - Reveal logistical and operational considerations which may have implications for the offshore test

2013

- Main conclusions:
 - Polymer mixing unit to be improved before the offshore injection pilot
 - Centrifugal pumps onshore, on board the supply vessel, and on the platform need to be replaced or by-passed

 Dilute the cross linker solution to give accurate dosing

HEIDRUN POLYMER AND LPS INJECTION TEST SEPT. 2010

- Mix 5 000 ppm HPAM "mother" solution onshore in Kristiansund
- Ship "mother" solution offshore and store at Heidrun platform
- Inject "mother" solution downstream wellhead choke to final polymer conc. of 300 ppm and 600 ppm in SRP water
- Inject cross linker, AlCit, downstream wellhead choke at 300:10 and 600:20 polymer:Al ratio in SRP water

LOGISTICS AND OPERATIONS - ONSHORE

Dissolution Test April 2009

- Polymer slicing unit for wetting the polymer powder
- Capacity 100 kg/h powder

Upgrading Onshore Facilities

- Stainless steel tanks with paddles to mature and store the "mother" solution
- Screw pump for loading the polymer solution to the supply vessel
- Tanks and lines tested for iron, < 5 ppm
- Required 700 m³ of 5 000 ppm "mother" solution (3 500 kg powder)
- Polymer powder from May 2009 rejected; filter ratio 3 – 3.7 (1.5 recommended in API 63)
 - Freshly produced polymer delivered 5 days later

SAMPLING AND ANALYSIS PROGRAM

- High quality polymer solution is challenging
 - Shear degradation, chemical degradation and biological degradation
- Quality control (QC) of polymer powder
 - Water content, insoluble particles, viscosity and filter ratio
- Quality control (QC) of polymer "mother" solution and diluted solutions (300 ppm, 600 ppm)
 - Viscosity, filter ratio, iron content, pH, temperature, and samples for chemical analysis

LOGISTICS AND OPERATIONS - OFFSHORE

- Supply vessel with screw pumps identified
- No need for biocide in "mother" solution
 - 3 months before bacterial activity
- Insignificant degradation over time in a 3 weeks rolling test
- The vessel's mud tanks inspected and rewashed
- "Mother" solution in the platform's completion storage tanks and mixing tanks
 - Total volume available 300 m³
- Vessel and platform lines and tanks tested for iron
 - < 10 ppm

LOGISTICS AND OPERATIONS - OFFSHORE

- Three batches of "mother" solution a 230 Sm³
- Shipped offshore in 3 separate trips
- Injection batches:
 - 1. 300 ppm polymer
 - 2. 300 ppm polymer + 10 ppm x-linker
 - 3. 600 ppm polymer; 600 ppm polymer + 20 ppm x-linker
- Sampling for QC (viscosity, filter ratio, iron)
 - Before and after mixing onshore
 - After pumping to vessel
 - When arriving offshore
 - During injection
- Well injectivity tested before and after injection

INJECTION VISCOSITY AT WELLHEAD - OFFSHORE

Sample point 3: Polymer feed location upstream cross-linker feeding Sample point 5: Well-head

FILTER RATIO DATA AT WELLHEAD - OFFSHORE

INJECTIVITY BEFORE AND DURING POLYMER & LPS INJECTION

- Polymer and LPS injectivity improved compared to water injectivity before the test due to dual fracturing at lower injection rate
- Polymer and LPS injection giving approx. 20 bars lower downhole pressure at rates below 150 m³/h (= 3 600 m³/D)

INJECTIVITY BEFORE AND AFTER POLYMER & LPS INJECTION

- After a shutdown the dual fracture system closed, and injectivity and WHP is back to same level as before the test
- The polymer/LPS test has not harmed the injectivity

CONCLUSIONS

- Storage, mixing, transport and injection of polymer solution in harsh climate is possible without destroying the polymer
- Maintaining polymer viscosity required proper planning and stringent quality control
- Polymer and LPS injection has not harmed, but improved well injectivity due to dual fracturing
- No viscosity degradation occurred in the tubing during injection
- No discharge of "red" polymer to sea

SPE Annual Technical Conference and Exhibition

30 September-2 October » Ernest N. Morial Convention Center » New Orleans, Louisiana, USA

Acknowledgements

Statoil Halliburton Heidrun asset partners (Petoro; ConocoPhillips Skandinavia, Eni Norge) IRIS (Yard test) Einar Hegre and Thomas G. Theting, Statoil

Slide 33

Society of Petroleum Engineers

Thank you for your attention!

There's never been a better time for GOOD ideas

Presentation title

Presenters name Presenters title E-mail address@statoil.com Tel: +4700000000

www.statoil.com

