
Flow diversion mechanisms, main types of 

diversion chemicals, laboratory testing Snorre
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Sweep efficiency
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› Large EOR potential by improving the sweep efficiency which can be exploited by 

mobility control

• Increasing the water viscosity

• Decreasing the water permeability

• Flow diversion by decreasing flow through high permeability streaks
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Mobility control
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› For some polymers, mobility reduction can be substansial, 

even at low polymer concentration
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Shear rate, 1/s

SPE 165225, Reichenbach-Klinke
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In-depth plugging

› No need for in-depth plugging if layers are isolated – low cost near wellbore

blocking will work

› In-depth plugging if communications between layers – fomation of barriers will 

improve the sweep

› Volume, cost and complexicity increases by depth

› Some critical parameters› Some critical parameters

• Good injectivity

• Delayed and controlled plugging – mechanisms for activations

• Fluid-fluid and fluid-rock interactions

• Gelation models to match lab scale bulk and flood experiments and up-scaling to field

scale
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In-depth plugging

›
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Alkaline sodium silicate 

› Conformance control method for more than 90 years

› Water like viscosity

› Gelation activated by suitable activators, such as acid and temperature

› Sodium silicate flexibilibility (SiO2)n:(Na2O)

• Si to Na ratio controls the alkalinity, gelation type etc.

› Gelation can be understood by aggregate formation from nano scale to micro- and › Gelation can be understood by aggregate formation from nano scale to micro- and 

macro-scale

› Plugging of porous media either by 

in-situ gelation or by filtration of 

micro-size aggregates
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Sodium silicate injectivity
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› Diluted sodium silicate injected through Berea cores (R ~5 µm)

• Pressure increase in front core if filter size > pore size
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Effect of preflush

› Soften the formation water and cation exchange (CEC)

› Example – Tap water (20 ppm Ca) preflush 

• High concentration Ca bank due to ion exchange

• Combination of Ca-silicate precipitate and rapid gelation

• Plugging time in porous media more rapid than bulk gelation time

• With NaCl/KCl preflush, no Ca bank and plugging time in porous media similar to bulk gelation
timetime
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Effect of soft water preslug

› Close to injector

• Formation water effectively displaced by soft 
water 

• No risk of hard water and silicate mixing

• Silicate injectivity is good and retention is low

› Deeper into the formation

• Risk of hard water and silicate mixing (10%)

• Some reduction in injectivity and increased • Some reduction in injectivity and increased 
retention

› Deep into the formation

• Severe risk of hard water and silicate mixing

• Permeability reduction and retention increases

• Precipitation of divalent ions, fronts sharpen

Depth is here controlled by preflush volume and 
dispersion

Cation exchange

K – Ca, Mg, … at Preflush/FW mixing front

Na – K at Silicate/Preflush mixing front
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Mobility reduction

Bentheim

Sand
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Effluent ion production – silicate retention

pH = 11.5 by NaOH

• Derived dispersion profiles

• Delayed silicate breakthrough time – silicate 

retention

• Lower Mg and Ca concentration at breakthrough, 

in agreement with precipitated Mg,Ca-silicate in 

effluent

• Delayed Ca and Mg bank, probably because of 

dissolving precipitates

• Relative Al and Si profiles are similar  in sand (Al-

impurities in silicate solution), but not in Berea. 

However, maximum Al concentration < 30 ppm    
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Silicate retention

›
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Post flush

› Soft water preflush followed by seawater 

• Mixing of silicate and seawater with the potential of silicate precipitation

• Precipitation and RF depends on concentrations and CEC
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CEC in high permeability porous media

› Snorre cores (1986) matched to high permeability CEC in the range of 1.7 to 3.3 

meq/kg – CEC decreases by increasing permeability

y = 1021.1x

R² = 0.6722
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Snorre data 1986 

CEC vs. Permeability and Porosity
por = 0.25 por = 0.30 por = 0.35
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From Phreeqc simulation

• Without allowing for precipiation/dissolution, low concentration preflush – in-depth mixing of silicate 

and divalent cations is likely

• Allowing for precipitation/dissolution (due to high pH) the simulations predict precipitation of Ca-Mg-

silicates  and the amount of precipitation increases by increasing the temperature. Precipitation near

well is not likely
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Simulation of chemical reactions
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Experimental Pressure Drop

Simulation - Predicted Pressure Drop

Experimental Injection Rate

Simulation - Input Injection Rate

› Sodium silicate flood experiment at elevated temperature to demonstrate in-depth 

plugging

› Experiment well matched with simulations (Hatzignatiou et al.) 
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On designing sodium silicate for in-depth water diversion

› Design parameters

• Silicate volume and concentration

• Silicate quality

• Preflush volume

• Preflush salinity (ion composition)

• Make-up water quality

› Some constraints

• Demonstration of EOR potential

• Temperature profile

• Volume restrictions

• Reservoir Cation Exchange Capasity

• Injection pressure limit• Make-up water quality

• Activators external/internal

• Gelation kinetic

• Injection rate

• …..

• Injection pressure limit

• RO brine regularity-capasity

• Weather window

• Silicate disposal

• ……
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