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Sweep efficiency j,l[ IRIS
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> Large EOR potential by improving the sweep efficiency which can be exploited by
mobility control

* Increasing the water viscosity
* Decreasing the water permeability

* Flow diversion by decreasing flow through high permeability streaks



Mobility control j,l[ IRIS
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SPE 165225, Reichenbach-Klinke

> For some polymers, mobility reduction can be substansial,
even at low polymer concentration
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In-depth plugging j,[[ IRIS
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> No need for in-depth plugging if layers are isolated — low Cost near wellbore
blocking will work

> In-depth plugging if communications between layers — fomation of barriers will
improve the sweep

> Volume, cost and complexicity increases by depth

> Some critical parameters
* Good injectivity
* Delayed and controlled plugging — mechanisms for activations
*  Fluid-fluid and fluid-rock interactions

* Gelation models to match lab scale bulk and flood experiments and up-scaling to field
scale
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In-depth plugging j,[[ IRIS

> Deep diverting gel — Delayed crosslinked gel

* Al-citrate as crosslinker —»  LPS
> Temperature triggered plugging — Bright water
> Alkaline sodium silicate

* Pre Lowsal — Offshore alkalinefloeding was no option due to incompatibility due to
precipitation in seawater and\no available sources for soft water

* Post Lowsal — Injectionsof 'soft water is possible and may even be attractive

» Alkaline sodium silicate after a soft water preflush is an environmental attractive in-
depth alternative
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Alkaline sodium silicate

i IRIS

> Conformance control method for more than 90 years

> Water like viscosity

> Gelation activated by suitable activators, such'as acid and temperature

> Sodium silicate flexibilibility (SiO,):(Na50)

* Sito Na ratio controls the alkalinity, gelation type etc.

> Gelation can be understood by aggregate formation from nano scale to micro- and

macro-scale

> Plugging of porous‘media either by
in-situ gelation or by filtration of
micro-size aggregates
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Sodium silicate injectivity
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> Diluted sodium silicate injected through Berea cores (R ~5 um)

* Pressure increase in front core if filter size > pore size
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Effect of preflush il IRIS

> Soften the formation water and cation exchange (CEC)
> Example — Tap water (20 ppm Ca) preflush
* High concentration Ca bank due to ion exchange
* Combination of Ca-silicate precipitate and rapid gelation
* Plugging time in porous media more rapid than bulk gelation time

*  With NaCI/KCl preflush, no Ca bankand plugging time in porous media similar to bulk gelation
time
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Effect of soft water preslug j,l[ IRIS

> Close to injector I
*  Formation water effectively displaced by soft “T N -
water e AN
* No risk of hard water and silicate mixing
* Silicate injectivity is good and retention isdew ' : ~
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Mobility reduction j,l[ IRIS
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Effluent ion production — silicate retention j,[[ IRIS

N ) J

1.4

BGr'EE Fw =0.75,5i=0.1

/ Berea ik =0.75,0.5% KC
+— Rl OH )
oH=115by NaOH | o oy

—d—rel Mg

rel Ma

——rg|Ca

* Rel OH
el |
——re| Mg
——rez| Ma

— rgz| Ca

—a— e —— | A

S—H—=Tpl5i rel Si

1Disp ——— [isp
———— 1 1-Disp

0.00 1.00 2.00 3.00 4,00
1.4 N
. Derived di . il Berea’Fw = 0.25, Si=0.75

erived dispersion profiles iy o Ral OH

Delayed silicate breakthrough time —silicate R

retention
Lower Mg and Ca concentration at breakthrough,
in agreement with precipitated Mg,Ca-silicate in

(=]
= =]

effluent

Delayed Ca and Mg bank, probably because of o4
dissolving precipitates
Relative Al and Si profiles are similar in sand (Al-

[=1
[

impurities in silicate solution), but not in Berea.

—— re| Mg
——rz| Ma
——re| Ca
—— rel Al

—t— rg| 5i

1-Disp

==== [isp

However, maximum Al concentration < 30 ppm




INTERNATIONAL RESEARCH INSTITUTE OF STAVANGER AS

Silicate retention
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Retention of silicate (measured as mg/g rock) is proportional to FWxSi
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Both RF and silicate retention decrease as brine hardness decrease
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Silicate displacing soft brine will not reduce mobility and silicate loss is insignificant

Low silicate concentration displacing hard'brine will prior to gelation cause significant

silicate loss and delayed breakthrough-time

Silicate aggregates larger than.pore'size (which will be produced even at low silicate

concentration) will not be displaced
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Post flush il IRIS

> Soft water preflush followed by seawater
* Mixing of silicate and seawater with the potential of silicate precipitation

* Precipitation and RF depends on concentrationsand'CEC
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CEC in high permeability porous media ii IRIS
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Snorre cores (1986) matched to high permeability CEC in the range of 1.7 to 3.3
meq/kg — CEC decreases by increasing permeability
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From Phreeqc simulation

Without allowing for precipiation/dissolution, low concentration preflush — in-depth mixing of silicate
and divalent cations is likely

Allowing for precipitation/dissolution (due to high pH) the simulations predict precipitation of Ca-Mg-
silicates and the amount of precipitation increases by increasing the temperature. Precipitation near
well is not likely
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Simulation of chemical reactions j,[[ IRIS
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> Sodium silicate flood experiment at elevated temperature to demonstrate in-depth
plugging
> Experiment well matched with simulations (Hatzignatiou et al.)
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On designing sodium silicate for in-depth water diversion jl[ IRIS
AD
> Design parameters > Some constraints
* Silicate volume and concentration *..\Demonstration of EOR potential
* Silicate quality *  Temperature profile
* Preflush volume * Volume restrictions
*  Preflush salinity (ion composition) * Reservoir Cation Exchange Capasity
* Make-up water quality * Injection pressure limit
» Activators external/internal * RO brine regularity-capasity
* Gelation kinetic *  Weather window
* Injection rate * Silicate disposal



