Flow diversion mechanisms, main types of diversion chemicals, laboratory testing Snorres

- Large EOR potential by improving the sweep efficiency which can be exploited by mobility control
 - Increasing the water viscosity
 - Decreasing the water permeability
 - Flow diversion by decreasing flow through high permeability streaks

 For some polymers, mobility reduction can be substansial, even at low polymer concentration

In-depth plugging

🚺 IRIS

- No need for in-depth plugging if layers are isolated low cost near wellbore blocking will work
- In-depth plugging if communications between layers fomation of barriers will improve the sweep
- Volume, cost and complexicity increases by depth
- > Some critical parameters
 - Good injectivity
 - Delayed and controlled plugging mechanisms for activations
 - Fluid-fluid and fluid-rock interactions
 - Gelation models to match lab scale bulk and flood experiments and up-scaling to field scale

In-depth plugging

- > Deep diverting gel Delayed crosslinked gel
 - Al-citrate as crosslinker → LPS
- > Temperature triggered plugging \rightarrow Bright water
- Alkaline sodium silicate
 - Pre Lowsal Offshore alkaline flooding was no option due to incompatibility due to precipitation in seawater and no available sources for soft water

N 2013

- Post Lowsal Injection of soft water is possible and may even be attractive
- Alkaline sodium silicate after a soft water preflush is an environmental attractive indepth alternative

Alkaline sodium silicate

- Conformance control method for more than 90 years
- Water like viscosity
- > Gelation activated by suitable activators, such as acid and temperature
- Sodium silicate flexibilibility (SiO₂)_n:(Na₂O)
 - Si to Na ratio controls the alkalinity, gelation type etc.
- Gelation can be understood by aggregate formation from nano scale to micro- and macro-scale
- Plugging of porous media either by in-situ gelation or by filtration of micro-size aggregates

Sodium silicate injectivity

- > Diluted sodium silicate injected through Berea cores (R \sim 5 μ m)
 - Pressure increase in front core if filter size > pore size

Effect of preflush

- 2013 Soften the formation water and cation exchange (CEC) > 10%
- Example Tap water (20 ppm Ca) preflush >
 - High concentration Ca bank due to ion exchange •
 - Combination of Ca-silicate precipitate and rapid gelation •
 - Plugging time in porous media more rapid than bulk gelation time •
 - With NaCl/KCl preflush, no Ca bank and plugging time in porous media similar to bulk gelation time

18. november 2013

SPE 143836 Stavland et al.

Effect of soft water preslug

- > Close to injector
 - Formation water effectively displaced by soft water
 - No risk of hard water and silicate mixing
 - Silicate injectivity is good and retention is low
- > Deeper into the formation
 - Risk of hard water and silicate mixing (10%)
 - Some reduction in injectivity and increased retention
- > Deep into the formation
 - Severe risk of hard water and silicate mixing
 - Permeability reduction and retention increases
 - Precipitation of divalent ions, fronts sharpen

Depth is here controlled by preflush volume and dispersion

Cation exchange

- K Ca, Mg, ... at Preflush/FW mixing front
- Na K at Silicate/Preflush mixing front

Mobility reduction

Effluent ion production – silicate retention

- Derived dispersion profiles
- Delayed silicate breakthrough time silicate retention
- Lower Mg and Ca concentration at breakthrough, in agreement with precipitated Mg,Ca-silicate in effluent
- Delayed Ca and Mg bank, probably because of dissolving precipitates
- Relative AI and Si profiles are similar in sand (Alimpurities in silicate solution), but not in Berea.
 However, maximum Al concentration < 30 ppm

Silicate retention

<u> I</u>RIS

- > Retention of silicate (measured as mg/g rock) is proportional to $FWxSi^{1/3}$
- > Both RF and silicate retention decrease as brine hardness decrease
 - Silicate displacing soft brine will not reduce mobility and silicate loss is insignificant
 - Low silicate concentration displacing hard brine will prior to gelation cause significant silicate loss and delayed breakthrough time
 - Silicate aggregates larger than pore size (which will be produced even at low silicate concentration) will not be displaced

Post flush

- > Soft water preflush followed by seawater
 - Mixing of silicate and seawater with the potential of silicate precipitation
 - Precipitation and RF depends on concentrations and CEC

IRIS CEC in high permeability porous media Snorre cores (1986) matched to high permeability CEC in the range of 1.7 to 3.3 > meq/kg – CEC decreases by increasing permeability meg/kg —— Linear (meg/kg) Snorre data 1986 25 **CEC vs. Permeability and Porosity** y = 1021.1x $R^2 = 0.6722$ ♦ por = 0.25 por = 0.30 por = 0.35 20 25.00 **CEC (meq/kg)** 10 20.00 CEC (meq/kg) 15.00 10.00 5 5.00 0.00 0.005 0.01 0.015 0.02 0.025 0 100 1000 10 10000 S=sqrt(por/k)·por/(1-por) Permeability, md

From Phreeqc simulation

- Without allowing for precipiation/dissolution, low concentration preflush in-depth mixing of silicate and divalent cations is likely
- Allowing for precipitation/dissolution (due to high pH) the simulations predict precipitation of Ca-Mgsilicates and the amount of precipitation increases by increasing the temperature. Precipitation near well is not likely

- Sodium silicate flood experiment at elevated temperature to demonstrate in-depth plugging
- > Experiment well matched with simulations (Hatzignatiou et al.)

On designing sodium silicate for in-depth water diversion

🏢 IRIS

- > Design parameters
 - Silicate volume and concentration
 - Silicate quality
 - Preflush volume
 - Preflush salinity (ion composition)
 - Make-up water quality
 - Activators external/internal
 - Gelation kinetic
 - Injection rate
 -

- > Some constraints
 - Demonstration of EOR potential
 - Temperature profile
 - Volume restrictions
 - Reservoir Cation Exchange Capasity
 - Injection pressure limit
 - RO brine regularity-capasity
 - Weather window
 - Silicate disposal
 -

6