

Presented at the FORCE Education Seminar, NPD, Nov. 6-7., 2013.

Example: "Smart Water" in Chalk

Spontaneous imbibition: T $_{\rm res}$ =90 °C; Crude oil AN=0.5; S $_{\sf wi}$ =10% Chalk: 1-2 mD

- •Formation water: VB
- •Seawater: SW
- •Seawater depleted in NaCl
- •Seawater depleted in NaCl and spiked with 4x sulfate

Example: "Smart Water" in Limestone

Spontaneous imbibition at 130°C of FW and SW into Res# 4-12 using crude oil with AN=0.50 mgKOH/g. Low perm. 0.1-1 mD.

Example: "Smart Water" in Sandstone

Low Salinity EOR-effect under forced displacement

What is "Smart Water"?

- "Smart water" can improve wetting properties of oil reservoirs and optimize fluid flow/oil recoveryin porous medium during production. ater" can improve wetting provide and optimize fluid flow/
medium during production.
ater" can be made by modif
on.
- "Smart water" can be made by modifying the ion composition.
	- No expensive chemicals are added.
	- Environmental friendly.
- Wetting condition dictates:
	- Capillary pressure curve; $P_c=f(S_w)$
	- the contract of Relative permeability; k_{ro} and $k_{rw} = f(Sw)$

Water flooding

- •Water flooding of oil reservoirs has been performed for a century with the purpose of: with the purpose of: LShop 6-7
	- Pressure support
	- Oil displacement
- \bullet Question:
	- Do we know the secret of water flooding of oil reservoirs??
	- If **YES**, then we must be able to explain why a "Smart Water" sometimes increases oil recovery and sometimes not.
- • If we know the chemical mechanism, then the injected water can be optimized for oil recovery.
- • Injection of the "Smartest" water should be done as early as possible.

Outline

- • Discuss the conditions for observing EOReffecets by «Smart Water» in: the conditions for obser
by «Smart Water» in:
nates
implified chemical expla
	- Carbonates –
	- Sandstones
- •A very simplified chemical explanation

Wetting properties in carbonates

- Carboxylic acids, R-COOHAN (mgKOH/g)
- Bases (minor importance)
	- BN (mgKOH/g)
- Charge on interfaces
	- Oil-Water
		- R-COO
	- Water-Rock
		- Potential determining ions
			- **Ca2+, Mg2+,**
			- **(SO42-, CO32-, pH)**

Ekofisk

- • **Why is injection of seawater such a tremendous success in the Ekofisk field?**
	- **Highly fractured**–
	- **High temperature, 130 oC.** –
	- \equiv **Low matrix permeability, 1-2 mD**
- \bullet **Wettability:**
	- –**Tor-formation: Preferential water-wet**
	- **Lower Ekofisk: Low water-wetness**
	- **Upper Ekofisk: Neutral to oil-wet**
- • **Estimated recoveries**
	- **1976: 18%**
	- –**2001: Goal: 46%**
	- **NPD; 2002: 50%**
	- **2007: Goal 55 %**

Brine composition

Seawater: $[SO_4^2$]~2 [Ca²⁺] and [Mg²⁺]~ 2 [SO₄ 2-] $[Mg^{2+}]$ ~4 $[Ca^{2+}]$]

Effect of Sulfate in SW

Is Ca2+ active in the wettability alteration?

Co-Adsorption of SO42- and Ca2+ vs. Temperature 0.250.500.75 1.00**C/Co** $A = 0.174$ Co SO4 FL #7-1 SSW-M at 21 °C C/Co SCN FL#7-2 SSW-M at 40°C A=0.199C/Co SO4 FL#7-2 SSW-M at 40°C $= 0.297$ C/Co SO4 FL#7-3 at 70°CSCN FL#7-4 at 100℃ A=0.402 SO4 FL#7-4 at 100 ℃ SCN FL#7-5 at 130°C $A=0.547$ *(Extrapoler **Method:**1. Core saturated with SW without SO_4^2 -2. Core flooded with SW spiked with SCN- (Chromatographic separation of SCN- and SO 2- 0.00) 42-0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2 1.4_{PV} 2.6PV)
C/Co SO4 FL#7-5 at 130°C For $\frac{1}{2}$

For $\frac{1}{2$

PV

C/Co Ca2+ Test #7/1 SW at 23°C \rightarrow -C/Co Ca2+ Test #7/2 SW at 40 °C $-\Delta$ - C/Co Ca2+ Test #7/3 SW at 70 °C C/Co Ca2+ Test #7/4 SW at 100 °C \rightarrow -C/Co Ca2+ Test #7/5 SW at 130 °C

0.0

0.5 1.0 1.5 2.0 2.5

0.5

1.0

C/C o

 $$ 14

Effects of potential determining ions and temperature on spontaneous imbibition

Suggested wettability mechanism

16

Maximum oil recovery from chalk cores when different imbibing fluids were used (SW with varying SO_4^2 - conc.). Oil: AN=2.07 mgKOH/g).

Ion composition in PW from Ekofisk

Can modified SW be an even "Smarter" EOR-fluid

Spontaneous imbibition: T $_{\rm res}$ =90 °C; Crude oil AN=0.5; S $_{\sf wi}$ =10%

- •Formation water: VB
- •Seawater: SW
- •Seawater depleted in NaCl
- •Seawater depleted in NaCl and spiked with 4x sulfat e

Effect of Salinity and Ion concentration

The access of potential determining ions to the calcite surfaceis affected by the concentration of non active ions in the double layer

Forced displacement using «Smart SW Water»

Oil recovery by forced displacement from the composite limestone reservoir core. Successive injection of FW, SW and SW-0NaCl. T_{test}: 100°C. Injection rate: 0.01 ml/min (≈0.6 PV/D).

Low salinity EOR-effects in carbonates

SPE 137634 Ali A. Yousef et al. (Saudi Aramco)

Codition for observing low salinity EOReffects in carbonates

- •The carbonate rock must contain anhydrite, $CaSO₄(s)$
- \bullet Chemical equilibrium: **CaSO4(s) ↔ Ca2+(aq) + SO42-(aq) ↔ Ca2+(ad) + SO42-(ad)**Force workshop 6-7 Nov 2013
- •The concentration of SO_4^2 (aq) depends on:
	- \sim \sim – Temperature (decreases as T increases)
	- Brine salinity $(Ga^{2+}$ concentration)
- \bullet Wettability alteration process:
	- Temperature (increases as T increases)
	- Salinity (increases as NaCl conc. decreases)
- \bullet Optimal temperature window
	- $-$ 90-110 °C ?

Concentration profiles of Ca²⁺, Mg²⁺, and SO₄²⁻ when flooding reservoir limestone core with DI water, after aging with FW. T_{test} : 100°C, Injection rate: 0.1 ml/min.

Low salinity EOR-effect

Oil recovery by forced displacement from a reservoir limestone core containing anhydrite. Successive injection of FW, and 100× diluted FW. T_{test}: 100°C. Injection rate: 0.01 ml/min (≈1 PV/D).

Simulated dissolution of $CaSO₄(s)$ when exposed to FW-0S, 10× and 100× diluted FW at different temperatures.

"Smart Water" in Sandstone

- • Some experimental facts
	- – Porous medium
		- Clay must be present
	- –— Crude oil
- Must contain polar components (acids and/or bases) Experimental facts and the present

in must be present

oil

contain polar components (acid
	- – Formation water
		- Must contain active ions towards the clay (Especially divalent ions like Ca²⁺ and Mg²⁺)

General information O il rec. CONCE WEST OF THE HISTORY CONTROL 15 HS Imbibition, Pe>0, Weltability alt. 11

 (D)

 \circledA

 Hs

Local increase in pH important

Suggested mechanism

Proposed mechanism for low salinity EOR effects. Upper: Desorption of basic material. Lower: Desorption of acidic material. The initial pH at reservoir conditions may be in the range of 6

Clay minerals

- •Clays are chemically unique e chemically unique²⁰¹³
nent localised negative cha
cation exchangers
eral orderof affinity:
: Nat² K⁺ < Mg²⁺ < Ca²⁺ << H⁺
	- $\mathcal{L}_{\mathcal{A}}$ Permanent localised negative charges
	- $\mathcal{L}_{\mathcal{A}}$, and the set of th Act as cation exchangers
		- General order of affinity:

Li+ < Na+ < K+ < Mg2+ < Ca2+ << H+

Adsorption of basic materialQuinoline

Burgos et al. Evir. Eng. Sci.,**19,** (2002) 59-68.

Kaolinite: Adsorption reversibility by pH

Adsorption of acidic components onto KaolinitepHinitial Γ**max** µ**mole/m2** Adsorption of **benzoic acid** onto kaolinite at 32 °C from a NaCl brine (Madsen and Lind, 1998)**5.3 3.7 6.0 1.2 8.1** 0.1 of <u>benzoic acid</u> onto kaolinite at 32 °C from

(Madsen and Lind, 1998)

(Madsen and Lind, 1998)

(PH_{initial} Stranger Changes 1, 2013)

(CC5.3 3.7 3.7 6.0 1.2

Increase in pH increases water wetness for an acidic crude oil.

Oil: Acidic or Basic

Lower initial pH by CO2<u>**a** increses the low \overline{a} </u> **salinity effect**

 \mathbf{CO}_{2} + $\mathbf{H}_{2}\mathbf{O} \leftrightarrow \mathbf{H}_{2}\mathbf{CO}_{3}$ + $\mathbf{OH}^{\text{-}} \leftrightarrow \mathbf{HCO}_{3}^{\text{-}}$ + $\mathbf{H}_{2}\mathbf{O}$ 36

LS water increases oil-wetness

Adsorption of Quinoline vs. pH at ambient temperature for LS (1000 ppm) and HS (25000 ppm) fluids.

Ref. Fogden and Lebedeva, SCA 2011-15(Colloids and Surfaces A (2012)Adsorption of crude oil onto kaolinite

It is not a decrease in salinity, which makes the clay more water-wet, but it is an increase in pH

Snorre field

- •Lab work
- $\mathcal{L}_{\mathcal{A}}$ Negligible tertiary low salinity effects after floodingwith SW, on average <2% extra oil. **For 2013**
	- $\mathcal{L}_{\mathcal{A}}$ T_{res} =90 °C
- •Single well test by Statoil
	- $\mathcal{L}_{\mathcal{A}}$ Confirmed the lab experiments
- • Question:
	- $\mathcal{L}_{\mathcal{A}}$ Why such a small Low Salinity effect after flooding Snorre cores with SW ?

New study at UoS: Lunde formation

Table 5. Properties of the oil.

PS!! The oil was saturated with $CO₂$ at 6 bar.

 The core was flooded FW diluted 5x and the pH of the effluent stayed above 10.

Plagioclase gives alkaline solution: pH: 7.5 to 9.5

Plagioclase

- Anionic polysilicates give alkaline solution $\mathcal{L}_{\mathcal{A}}$ Albite as example: **NaAlSi3O8 + H2O ↔ HAlSi3O⁸ + Na⁺ ⁺ OH-**
- At moderate salinities, the pH of FW will be above 7, which means low adsorption of polar components onto clay; negligible LS EOR-effect.olysilicates give alkaline sol

s example:
 $B_8 + H_2O \leftrightarrow HAlS_3O_8 + Na^+ + C_6$

ate salinities, the pH of FW

which means low adsorption

rats onto clay; negligible LS
- Due to buffer effects, the pH of FW was not decreased significantly by adding CO₂.

Low salinity effect of about 3-4 % of OOIP with SW as low salinity fluid

Excellent LS EOR conditions

(Quan et al. IEA EOR Symposium 2012, Regina, Canada)

Varg field: SPE 134459

43

Relationship: T and pH

- \bullet Wettability alteration of clay by LS water: **Clay-Ca2+ + H2O ↔ Clay-H+ + Ca2+ + OH- + heat**
- Desorption of active cations from the clay surface is an \bullet exothermic process, ∆H<0.
- Divalent cations (Ca^{2+},Mg^{2+}) are strongly hydrated in water, and as the temperature increases the reactivity of these ions increases, and the equilibrium is moved to the left.alteration of clay by LS water:
 $+ H_2O \leftrightarrow Clay-H^+ + Ca^{2+} + OH^-$

of active cations from the clay s

process, $\Delta H \& 0$.

tions (Ca²⁺, Mg²⁺) are strongly hydrated in

re increases the reactivity of these ions incr

is moved t
	- The change in pH should decrease as the temperature increases.
	- Dissolution of anhydrite, $CaSO₄(s)$, will move the equilibrium to the left.

Gamage, P., Thyne, G. *Systematic investigation of the effect of temperature during aging and low salinity flooding of Berea sandstone and Minn*, 16th European Symposium on Improved Oil Recovery, Cambridge, UK, 12-14 April, 2011.

Temperatur – pH screening

Summary

- • «Smart water» EOR in Carbonates
	- –Optimal brine composition
- Modified SW: Depleted in NaCl and spiked with SO_4^2 : Active ions SO_4^2 , Ca²⁺, Mg²⁺ water» EOR in Carbonat

I brine composition

Fied SW: Depleted in NaCl and

The composition

The Ca²⁺, Mg²⁺

Ans for LS FOR-effects
	- – T_{res} >70 ºÇ
	- – Conditions for LS EOR-effects
		- Formation must contain dissolvable anhydrite, CaSO₄.

Summary

- • «Smart Water» EOR effects in Sandstone
	- Formation water:
		- pH < 6.5
		- Reasonable high $\mathbf{Ga}^{\mathbf{2+}}$ and total salinity.
	- Clay must be present (Illite and kaolinite)
	- Plagioclase can affect the pH both in a positive and negative way LS EOR effects depending on initial salinity.ter» EOR effects in Sandstone

	on water:

	5-6.5

	sonable high Ca²⁺ and total salinity.

	ust be present (Illite and kaolinite)

	lase can affect the pH both in a positive

	EOR effects depending on initial salini
	- Combination of high T_{res} (>100 °C) and high conc. of Ca²⁺ can make the formation too water-wet.
	- A pH-HS/LS scan can give valuable information of the potential for LS-EOR effects.

Acknowledgement

