Smart Water Injection: Modeling of mechanisms & upscaling

Aksel Hiorth

FORCE meeting, NPD, Stavanger 7th of November 2013

Acknowledgement

• Norwegian Research Council, CoP-Ekofisk License, and BP-Valhall License

Outline 2013

- Strategic goals
- Smart water modelling
 - How to model mechanism
- Example: Ekofisk case
 - Pore water chemistry alteration on field scale

The Goal

Increase oil recovery cost effectively and responsibly

The opportunity

Multi scale understanding

University

Modeling of Mechanisms

• Wettability is a dynamic quantity – Competition on the surface

Competition in the bulk - seawater

		Т	=130 <i>°</i> C		~3	
lon	mol/l	Free Ion (percent)	Me-SO ₄ Pair (percent)	Me-HCO ₃ Pair (percent)	Me-CO ₃ Pair (percent)	Me-Cl Pair (percent)
Na⁺	0.45	85.9	2.6	0	0	11.4
Mg ²⁺	0.045	72.2	23.0	0.03	0.02	4.7
Ca ²⁺	0.011551	81.6	14.7	0.02	0.07	3.4
K+	0.01	99.95	0.04	-	-	-
		N				

lon	mol/l	Free Ion (percent)	Ca-anion Pair (percent)	Mg-anion Pair (percent)	Na-anion Pair (percent)	K-anion Pair (percent)
SO42-	0.024	0.69	7.0	43.3	49.0	0.02
HCO ₃ -	5.13E-05	69.6	5.1	25.2	0	-
CO32-	1.73E-05	5.0	47.1	47.7	0	-
CI	0.525	89.7	0.07	0.39	9.8	-

Competition on the surface

. 0

$$\begin{aligned} &> CaRCOO^{0} \rightleftharpoons > CaOH_{2}^{+} + R - COO^{-} - H_{2}O \\ &> CaCO_{3}^{-} \rightleftharpoons > CaOH_{2}^{+} + HCO_{3}^{-} - H^{+} - H_{2}O, \\ &> CaOH \rightleftharpoons > CaOH_{2}^{+} - H^{+}, \\ &> CaHCO_{3} \rightleftharpoons > CaOH_{2}^{+} + HCO_{3}^{-} - H_{2}O, \\ &> CaSO_{4}^{-} \rightleftharpoons > CaOH_{2}^{+} + SO_{4}^{2^{-}} - H_{2}O, \\ &> CO_{3}H \rightleftharpoons > CO_{3}^{-} + H^{+}, \\ &> CO_{3}Ca^{+} \rightleftharpoons > CO_{3}^{-} + Ga^{2^{+}}, \\ &> CO_{3}Mg^{+} \rightleftharpoons > CO_{3}^{-} + Mg^{2^{+}}. \end{aligned} \\ &= CO_{3}Mg^{+} \rightleftharpoons > CO_{3}^{-} + Mg^{2^{+}}. \qquad \Leftrightarrow K = \frac{a_{>B}a_{C}\exp\{-Z_{C}F\psi/(RT)\}}{a_{>A}}, \\ &= \sigma^{2} = 2\varepsilon\varepsilon_{0}k_{B}T\left(\sum_{i}m_{i}\exp\{-Z_{i}F\psi/(RT)\} - m_{i}\right), \\ &= F\left(m_{>CaOH_{2}^{+}} - m_{>CaCO_{3}^{-}} - m_{>CaSO_{4}^{-}} - m_{>CO_{3}} + m_{>CO_{3}Mg^{+}}\right). \end{aligned}$$

•Wettabillity should be related to amount of adsorbed oil

Comparison with experimental data

Next steps

- Relate surface speciation to wettability
- Can use model to:rehop 67 Optimize brine Nor Probe Temark
 - Exp @ 8bar, Reservoir ~200bar
 - -pH
 - Effect of live oil

TRANSLATING ROCK FLUID INTERACTIONS TO FIELD

• How far into the reservoir is the injection water smart?

• Optimal water on core = optimal water field?

A. Hiorth, E. Jettestuen, J. L. Vinningland, L. M. Cathles, M. V. Madland. IEA EOR 34th Annual Symposium Stavanger 2013

Core vs field

«Typical» Core

- 1D flow
- Constant temperature
- Constant flooding rate
- Molecular diffusion important
- Usually matrix flow

Modeling of Smart Water – mechanism & upscaling

• Hard to kn

- Hard to know where water is flowing
- Temperature gradients
 Cold inj. water hot reservoir
- Large variation in flooding rate
 - High flooding rates close to injector and producer

IRIS

- Molecular diffusion?
- Fracture and matrix flow
- Dispersion

Reservoir model for smart water

- Geochemical reactions
 Bulk & surface aqueous chemistry
- Temperature model
- Interpolation between oil-wet and water wet Pc & rel. perm
- Good grid resolution

Simple flow model – adv chemistry

- 2D flow of incompressible fluids
- Homogeneous reservoir
- Streamlines constant in time
- Piston-like displacement of oil and water
- Negligible diffusion and dispersion
- Neglect heat exchange between streamlines & reservoir

Homogeneous matrix flow

3 years

5.3 years mineral alteration

Comparison with data

SO4 - Produced water

Summary

- Similar behavior observed in tab and field
 - Ca-gain (dissolution?), Mg-and SO4 loss (precipitation?)
- Ion profile sensitive to reservoir T model – Used as a tool to constrain T-model?
- Pore water composition changes from injector to producer
 - Important for optimal EOR performance
- Similar approach on complex streamlines

Conclusion

- Important to model mechanism
 - Predictions, optimization
- Core to field program needed
 - E.g. water X gives Y amount of oil
 - Missing opportunities?
- Standard reservoir models not suited for water chemistry
 - Stream line approach?

