Imperial College London

Probabilistic Seismic

Facies Classification

Lukas Mosser, Michael Steventon, Rodolfo Oliveira

lukas.mosser15@imperial.ac.uk, michael.steventon13@imperial.ac.uk, rodolfo.oliveira15@imperial.ac.uk

A Bayesian View on Seismic Interpretation

Student - PhD salt tectonics

Student - MSc sequence stratigraphy

- Prior knowledge most important factor in the seismic interpretation
- Independent of data
 prior dominating term

 Machine Learning can't *interpret*

 But we can build models built on data and interpretations

+15 yrs - thrust expertise Only 21% of G+G professionals got this correct Bord et al

Bond et al (2007)

Uncertainties in the seismic workflow

Data Acquisition

- Ambient Noise
- Acquisition Geometry
- Equipment Failure
- Tech Limitaitons

Data Processing

- Migration
- Time to Depth
- Noise Suppression
- Multiples
- Ghosting
- Down-sampling
- Etc.....

Data Interpretation

- Noise
- Artefacts
- Resolution
- Visual Representation

An interpreters, prior knowledge or lack of, bias, conceptual uncertainty can be an important source of error in the seismic workflow.

Types of Uncertainty

Aleatoric Uncertainty

- Inherent "Noise" in Data
- Not explained with more data
- E.g. physical limits of data

- Model Errors
- Can be explained with more data
- Seismic often small data Getting more data often not an option

From Deterministic to Bayesian Neural Networks

Deterministic Neural Networks with Dropout

Approximate Posterior Inference by Dropout

Model Architecture – Bayesian ConvNet: Segnet

Dropout after every convolution operation!

- 1. Apply dropout at training time
- 2. Apply dropout at val/test time

Sample N Forward Predictions!

For each Patch in Inline/Xline

- 1. Average N Predictions
- 2. Compute Classwise Prediction Variance

-> Model Unvertainty -> Epistemic

Reassemble patches to obtain Inline/Xline

Dataset

F3 Dataset – **OPEN ACCESS** – Dutch NLOG Database

https://opendtect.org/osr/Main/NetherlandsOffshoreF3BlockComplete4GB

Basin	Southern North Sea
Processing	Pre-Stack Time Migration
Area (km ²)	380
Bin Size (m)	25 × 25
Sampling Interval (ms)	4
Inline Range	100 - 750
Crossline Range	300 - 1250
Z Range (ms)	0 - 1850
Data Size	~1.0 GB
# of Training/Val Inlines	5 Training / 4 Validation

Seismic Facies Classificaiton

Validation Inline 4xx

*Gold Standard Annotation

Validation Inline 6xx

Top Salt Horizon

Top Salt: Bayesian CNN vs Human Interpreter

Data Quality issues lead to higher uncertainty

Extracted Top Salt Surface Comparison

Polygonal Fault Volume Probabilistic Estimate

What did and what did not work? Open Challenges

- What did work?
 - Patch-based training better for small datasets, not enough data for full x/inline
 - Monte-Carlo Dropout *can* be applied to any neural network
 - Segnet provides good results
- What did not work?
 - U-Net not clear how big impact of skip connections is on uncertainty
 - MalenoV dataset too limited.
- Open Challenges:
 - Baseline dataset: Possibly this one?
 - How to deal with multiple interpretations?

Conclusions

- Two Types of Uncertainty: Epistemic and Aleatoric
- Traditional Neural Networks Provide no measure of model uncertainty (UQ on weights)
- Bayesian Neural Networks allow estimation of model uncertainty
- Dropout applied at test time can approximate posterior inference
- Bayesian Neural Networks allow good prediction on small datasets
- Allows Variance in predictions to be incorporated into
 - Decision making process
 - Data Acquisition Strategy

Imperial College London

Backup Slides