

Machine Learning in 4D Seismic Interpretation: Monitoring the Reservoir

Mike Brhlik

Subsurface Technology ConocoPhillips, Houston

August 7, 2018

Basic Seismic Measurement: Time Delay & Amp Diff

Motivation

- **Objective:** Ability to reliably and efficiently interpret <u>4D reservoir property changes</u> <u>directly from joint usage of multiple attributes and multiple seismic surveys</u> to impact
 - Reservoir management decisions
 - Well Planning
 - Reservoir Model Updating impacts Long Range Planning and Forecasting

<u>Challenges:</u>

- Current 4D interpretation requires simulation and rock physics models (modeling workflows)
- 4D Seismic Inversion Difficult
- Qualitative \rightarrow Semi Quantitative interpretation
- Linear workflows currently used for a very non-linear dynamic problem

• Data Analytics Opportunity:

- Directly estimate reservoir property change maps
- Data driven workflows
- Multidimensional data integration

4D Pre-stack inversion

Vendor	Algorithm Type	Inputs	Outputs	Reservoir Properties Inversion	Joint 4D Inversion	Joint Amp & Time Shift	3D Acoustic Impedance (Inversion vs. True)
Contractor 1	Joint 4D Inversion, Prestack	Angle Stacks, Wavelets, LFM	∆AI, ∆PR, Timeshifts, 4DLFM	Rock Physics template Compaction	Multiple vintages	intra-reservoir only	Holder Base Al la thread still
Contractor 2	3D Inversion + Differencing, 4D Inversion Prestack	Angle Stacks, Wavelets, LFM	∆AI, ∆PR, Timeshifts, 4DLFM	Rock physics template Compaction – maybe	Yes	No	hotel_Base_AI. [g.ft/(cm3.s)]
Contractor 3	Joint 4D Inversion, Prestack	Angle Stacks, Wavelets, LFM	∆AI, ∆PR, Timeshifts, 4DLFM	Rock Physics template Compaction	Multiple vintages	No	the second secon

ConocoPhillips

4

4D Synthetic Model Inversion: △ (Acoustic Impedance) – Model vs. Inversion Results

Complexity of 4D Interpretation: Seismic sensitivity (Prestack Integration required)

Reservoir Changes	Pressure	Sw	Sg	Compaction	Net effect on Vp
@producers	\downarrow	1	1	Yes	↑ or ↓
@injectors	↑	1	\downarrow	Yes	↑ or ↓

Complex Reservoir Property Changes

Property	Increase	Decrease	
Pressure	Softening	Hardening	
Sw	Hardening	Softening	
Sg	Softening	Hardening	

- Attributes typically used
 - 4D stack amp
 - Time Strain
- Integration of prestack data is critical for pressure/saturation discrimination

Seismic sensitivity to reservoir property changes makes 4D seismic assisted reservoir management possible

Complexity of 4D interpretation: non-linear, dynamic, multidimensional

Seismic Attributes

Dynamic Reservoir Property Prediction: 4D Analytics Workflow

Prediction Target: 4D pressure, saturations, temperature and compaction changes

Onshore Conventional Field: Synthetic Study

Experiment Outline:

- Forward model 4D synthetic seismic based on a dynamic reservoir simulation model
- Assume knowledge of predictors (elastic/seismic attributes) & targets (pressures , saturations) at wells: ground truth
- Train and validate multiple supervised learning algorithms (random forest, neural nets, ...)
- Test sensitivities:
 - Type of predictor
 - Reservoir stratigraphy
 - Noise

Forward Modeled Synthetic Seismic

Horizon Based Attributes

- Synthetic seismic generated from the sim model
- Target attributes (ΔSw, ΔSg, ΔP) related to seismic attributes
 - a) 4D Elastic properties (acoustic impedandance, shear impedance, Vp/Vs, time strain)
 - b) 4D Seismic attributes (stack, gradient and intercept quadrature amplitudes, seismic time strain,...)
- Maps extracted and averaged over the sand intervals:

Well points extracted 100 ft intervals

Noise Sensitivity: Training & Validation

S/N=0 Synthetic

Median importance of variables: 'stack' = 0.129 'grad' = 0.633'intercept' = 0.129 't strain' = 0.110

Noise Sensitivity: Training & Validation

x=-0.0201238 y=0.0342268

S/N=12 Synthetic

x=-43.206 y=997.985

Median importance of variables: 'stack' = 0.177 'grad' = 0.516'intercept' = 0.163 't strain' = 0.144

Map Predictions Time Step 1

△ Sg Comparison

Sand1: Validation correlation

ConocoPhillips

Synthetic Seismic – Prediction Maps: Time Step 1 changes

Sand 1

ConocoPhillips

Key Highlights:

- Δ Pressure, Δ Sg excellent agreement
- Δ Sw noisy, sensitive only to larger changes
- Pre-stack input crucial

Synthetic Seismic – Prediction Maps: Time Step 1 changes

Sand 2

ConocoPhillips

- Observations:
- Δ Pressure, Δ Sg still good
- Δ Sw limited sensitivity
- Interbed interference can be resolved

4D Synthetic Project Learnings

- Time-lapse seismic inverse problem solvable by ML regression algorithms:
 - Random Forest stable, robust, best results
 - Gradient Boosted Trees alleviates some RF shortcomings
 - Neural Nets not as successful
- Map based analytics approach data driven
 - Avoids explicit need for a calibrated rock physics model
 - Simplifies vertical reservoir complexity (4D attributes can be augmented by 3D attributes, e.g. Impedances from inversion)
 - Predicted saturation and pressure differences directly constrain sim models
- Challenges:
 - Not a full volume based inversion (resolution issues) and depends on interpretation
 - Lack of 4D well data crucial assumption about sim model being true at well locations

□ <u>New</u> data driven workflow for <u>simultaneous 4D reservoir properties prediction</u>

□ Predictive Analytics is a key enabler for <u>directly predicting</u> (ΔP , ΔSw , ΔSg) using all <u>4D attributes</u> and integrating prestack seismic

Value to 4D interpretation workflows:

- Efficiency and reduced cycle time for interpretation
- Provides a common ground for revisiting 4D model updating workflows
- Facilitates inter disciplinary integration (geophysics, reservoir engineering,...)

□ Validation is critical

Success of the feasibility projects have <u>resulted in successful field data applications</u>

Future: Deep Learning - Multi Layer Neural Networks

- Neural networks are loosely modeled after the highly interconnected cortical neurons and how they pass information from one to another (via charge buildup).
- Intelligence and learning are accomplished when neural pathways are strengthened by associating observations or other impulses with a specific result.

Multi-Layer Perceptron (MLP)

- Hidden Layer-1 Hidden Layer-2 Hidden Layer-3
- Simplest form of neural net
- Everything is fully connected
- The weights of each connection are learned
- Universal extrapolators
- Excel in classification and regression

Convolutional Neural Net (CNN)

- Mainly used for classification
- Uses MLP at the end of the architecture
- A variety of features pertaining to the input are learned
- Computer vision is possible due to CNNs

Recurrent Neural Net (RNN)

- Used for classification or regression
- Outcomes are cycled back into the hidden layers to preserve information
- Useful for detecting patterns over time or other sequential data (i.e. speech recognition)
- Hard to train

