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“Having enough data, statistically one can predict anything”
“99 percent of statistics tells only 49 percent of a story” Ron DeLegge II

In statistical learning we establish a hypothetic first, while in machine learning the 
predictions are derived without a prior assumption and only from the training data given 
(supervised machine learning)

Some of the aspects that affect the accuracy of predictions are:
- Quality of data and sampling errors

- Degree of variance in sampling

- Size of data sampling
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Introduction: Neural Networks for Property Predictions

 Neural Networks have been used for a number of 
years to predict seismic reservoir properties from 
well data and seismic attributes.

 HampsonRussell Emerge has the ability to find 
and apply both linear and nonlinear models. 
Nonlinear solutions include Probabilistic Neural 
Networks (PNN) and Multi-Layer Feed-forward 
Networks (MLFN). The new addition is DFNN.

 Neural networks can produce better predictions 
than traditional multi-linear regression since they 
account directly for non-linear relationship 
between logs and attributes.
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Introduction: Porosity Prediction example
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* J.Dufour, “Integrated geological and geophysical interpretation 
case study, and Lame rock parameter extractions using AVO 
analysis on the BlackFoot 3C-3D seismic data, Alberta, Canada”



Deep feed-forward Neural Network (DFNN)
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We implemented and studied DFNN, which is a supervised neural network. The 
supervised learning is the task of inferring a function from labeled training data. 
The learning algorithm then generalizes from the training data to unseen 
situations. The resulting model is statistical.

A multi-layer neural network is considered deep if it has 2 or more hidden layers.  
As the number of hidden layers increase, a deep forward network can model 
more complexity, 8-10 layers can simulate any non-linear function. The greater 
the number of hidden layers, the greater the amount of training data required.

Depending on the amount of well control available this typically limits the training 
data set to be in the order of hundreds of points.  This practically limited the depth 
of the neural network and the adoption of DFNNs for reservoir geophysics.
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Deep Feedforward Neural Network (DFNN) 

 The Deep Forward Neural Network (DFNN) 
is an extension of the Multi-Layer Feed 
Forward Network (MLFN).

 The output of the first layer is hidden from 
the user so it is called a hidden layer.

 We can combine many networks in series to 
create a multilayer network.

 Extra layers allow the network to model 
transforms such as higher order 
polynomials.
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Comparison of MAT, PNN, DFNN prediction

 DFNN provides more accurate predictions and has faster run-times in 
comparison to the Probabilistic Neural Network (PNN).
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Too many parameters?
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 Training the DFNN is the process of 
determining the optimal set of weights.

 The weights are solved as a large nonlinear 
inverse problem using iterative techniques.

 To ensure the network is not over trained 
the network is tested on a separate 
validation dataset.

 Deep neural networks have many layers 
and parameters, increasing the risk of 
overfitting.
– Overfitting is characterized by observing 

a  small training error and a large 
validation error 
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How much training data is needed?
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To quantify the data requirements, we try to 
quantify what determines a successful 
prediction of the data.

We use the validation procedure to measure 
the success of training, specifically the 
percentage-based validation.

In the %-based validation process, a subset of 
the original training data is removed. The 
selection process is controlled by a random 
number algorithm. The DFNN is re-trained on 
the reduced training data and applied to the 
hidden subset. Validation plot: red are the validation 

samples and black are the training samples
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DFNN Parameter Control
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DFNN offers significant advantages in terms of 
control of training parameters and speed of 
application.

Each of the parameters shown on the left affects 
the accuracy of prediction.

Let’s look specifically into these parameters:

• Number of hidden layers 
• Number of nodes in a hidden layer
• Total number of iterations



Modifying the depth of DFNN: Number of Hidden Layers
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As the number of hidden layers is 
increased, the network has increasing 
number of weights with which to predict the 
training data.  

Hence, increasing the number of hidden 
layers generally reduces the training error, 
while potentially increasing the validation 
error.

If too many layers are specified there is not 
enough data to uniquely determine the 
weights, in this case the regularization terms 
will drive the weights to zero.  
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Testing the number of iterations
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This parameter sets the total number of 
iterations or steps which will be used for 
either the Conjugate gradient (CG) or 
Steepest Descent (SD) algorithm. 

This is the main control which the user has 
to balance the conflicting goals of 
simultaneously minimizing the training 
error and the validation error.  



What to do in case of lack of data?
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In order to obtain more training data we explore the use of synthetic 
seismic data derived from perturbations from the known well control.

Two approaches have been investigated:

Workflow 1: generate new wells using systematic changes 
Workflow 2: generate new wells based on adding statistical 
variations to the calibrated rock physics relationships.  

For example, new wells are created for which the reservoir 
thickness, porosity and fluid content are varied.  
Synthetic seismic gathers are then generated for each of these new 
wells.  These data are then used to train the DFNN. 



Workflow 1: create wells and synthetics using 
systematic changes
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This creates 24 wells with these 
combinations:

Porosity: 1, 10, 19, 28 %
Gas saturation: 0, 20, 40, 60, 80, 100 %



Augmenting real data with synthetic
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Synthetics with density inserted:



Density prediction GOM data set  
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Density from pre-stack inversion

Density from DFNN

The density predicted by DFNN gives a higher resolution result than pre-stack 
inversion and appears to tie the well better.
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Workflow 2: create wells using Rock Physics Modelling
 Fit one or more rock physics models 

(RPMs) to the well data
 Create additional logs to use in the 

application of the RPMs – here we 
compute Vshale volumetric logs

 Calibrate the RPMs to the real well data
 Create enhanced porosity logs
 Use the enhanced porosity logs as input 

to the calibrated RPMs to compute 
predicted elastic logs

 The input training data for the channel 
interval has porosities up to around 
22%, with a mean value of ~5%
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Enhanced EMERGE training set
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 Looking at the histogram of 
porosity samples for the channel 
interval, the new training data 
now has porosities up to 34%, 
with a mean value of ~11%



Prediction using extra data 
 After completing a standard EMERGE project to predict a volume of 

porosity using all the new data, the best prediction gives a clear 
definition of the high porosity channel feature:
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Correlation      *Error (%) **Total error (%)
Application:        0.828 5.11 29.4
Validation: 0.743 6.15 35.4

*This is RMS error (the difference between actual & predicted logs)



Prediction using only original data 
 Here is the equivalent slice for the best porosity prediction in 

EMERGE using only the original seven wells
 Notice the narrower dynamic range in predicted porosity, lower 

correlation values and higher errors
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Correlation     Error (%)   Total error (%)
Application:        0.711 4.47 40.5
Validation: 0.648 4.88 44



Summary
 Introduced the machine learning functionality via Deep Feed-

forward Neural Network

 Demonstrated the validation procedure of neural network training

 Discussed DFNN to parameter control and to the amounts of 
training data.

 Introduced two approaches to expanding the training data model

September, 201823



Acknowledgements

 Dan Hampson and Jon Downton of CGG for their work on DFNN and contributions 
to this talk

 Øyvind Kjøsnes, AkerBP for the joined work with CGG HampsonRussell on DFNN 
that is submitted to EAGE’s first workshop on machine learning

September, 201824



Thank you
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