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► Research institute with about 80 employees, located in 
Oslo

► Specialize in statistical analysis, machine learning, image 
analysis
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Traditional machine learning
Features OutputClassifierInput 



Training a classifier
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Training a classifier
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Training a classifier
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Training a classifier

9

Fe
at

ur
e

1

Fe
at

ur
e

1
Feature 2Feature 2



Training a classifier
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11playground.tensorflow.org

Neural network classifier



Different types of classifiers
Quadratic Linear Uncorrelated Nearest mean 

12

M. O. Gaussians Fisher Parzen window Neural network



What if the features are bad?
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Traditional machine learning
Features PredictionClassifierInput 



Deep Learning
Predicted saltConvolutional Neural Network (CNN)Input 
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Deep Learning
Predicted saltConvolutional Neural Network (CNN)Input 



CNNs learns high level features
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► Much higher accuracy

► Much more training data

Deep learning 
– a revolution in computer vision
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Deep learning is pushing AI
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Research challenges we aim to solve 
at NR
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NR experiment: 
Recognition of animal species
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Goal: Predict the species in the box 

Challenge: around 1500 labelled images
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NR experiment: 
Recognition of animal species



NR experiment: 
Recognition of animal species
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Lemen Røyskatt

Snømus Spissmus
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1: Røyskatt  (192)
2: Fugl     (120)
3: Spissmus (191)
4: Snømus     (60)
5: Snø          (196)
6: Lemen     (212)
7: Rusk        (223)
8: Vole (254)
9: Vann        (157)
10: Tomt       (211)

Confusion table:

---------------------- Predicted -----------------------------------
True |    1      2     3     4     5     6     7     8     9    10 |
---------------------------------------------------------------------
1    |  [ 188.  0.    2.    1.    0.    1.    0.    0.    0.     0. ]
2    |  [   0.  120.   0.   0.    0.    0.    0.    0.    0.     0. ]
3    |  [   0.    0.  186.  0.    2.    0.    0.    0.    0.     3. ]
4    |  [   3.    0.    1.   56.   0.    0.    0.    0.    0.     0. ]
5    |  [   0.    0.    2.    0.  192.  0.    0.    0.    2.     0. ]
6    |  [   0.    0.    0.    0.    0.  211.  0.    1.    0.     0. ]
7    |  [   0.    0.    3.    0.    0.    0.  217.  1.    1.     1. ]
8    |  [   1.    0.    1.    0.    0.    0.    3.  249.  0.     0. ]
9    |  [   0.    0.    0.    0.    0.    0.    0.    0.  157.   0. ]
10  |  [   0.    0.    0.    0.    0.    0.    1.    0.    0.  210.]
---------------------------------------------------------------------
Correct recognition rate = 98.3%

NR experiment: 
Recognition of animal species



NR experiment: 
Recognition of animal species
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Tail Grass/seeds/leafs

Grass/seeds/leafs Snow



NR-project: Seal detection
Havforsknings Instituttet – Marine Research Institute
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https://www.verticalmag.com/news/into-the-ice-a-pilots-diary/
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The challenge is that we
have several thousands of
large images covering sea
ice.

NR-project: Seal detection



► Dataset from the West Ice  2007 
& 2012 and Canada 2012

► About 10000 seal pups (9000 
harp seals and 1000 hooded 
seals) have been identified.

► About 90000 background images
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NR-project: Seal detection



Some results

34

Accuracy 3 classes (background, harp, hood): 99.7%

Heat map



Some results
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Accuracy 3 classes (background, harp, hood): 99.7%
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Accuracy 3 classes (background, harp, hood): 99.7%

Some results
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Accuracy 3 classes (background, harp, hood): 99.7%

Some results
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Mapping of roads from airborne laser 
scanning data



NR-project: Mapping of roads from 
airborne laser scanning data
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Digital elevation model (DEM) Gradient (slope) of the DEM



Results
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Results
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Results
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Airquip – Counting cars from satellites

43

Metrologisk institutt



Extracting key horizons
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COGMAR: 
Image analysis for marine data



Problem: Transfer learning
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Problem: Domain shift
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Training domainTraining domain

Test domain Test domain



Problem:  
No uncertainty estimates
No out-of-distribution detection
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Cats

Dogs

Panda



Problem: Confounding variables
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Thank you for the attention.

Questions?

anders@nr.no
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