Integrated Geohazard Assessment – The Case for Correlation, Calibration and Careful Consideration

Mike Clare and Steve Thomas Engineering Geology and Geohazards Team Fugro GeoConsulting Limited

6 December 2011 FORCE Seminar, Stavanger

Contents Menu

- Introduction to a Slope Systems Approach
- Importance of Multi-Disciplinary Approach for Correlation
- Calibration of Geophysics by Detailed Geohazard Core Logging
- **Case Studies**
- Outlining the Need for Careful Consideration
- Conclusions

Geohazard Assessment – Project / Time Context

an	Evaluate asset to
an	
g	ensure
	performance to
nt	specifications
pe,	and maximum
	return to the
•	shareholders

Direct Impact of Gravity Flows

Mass Movement Classification		Mass Movement Mechanism	Impact on Foundations 🖾		Impact on Pipeline/Flowline/Cable Impact on Pipeline/Flowline/Cable 		
			Profile View	Nature of Force on Foundation	Plan View	Orientation of Movement to Installation	
						Parallel	Perpendicular
Gravity Flow	Mass Flow	Debris Flow	$\left\{ \begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & $	Loading Burial Scour		Compression Burial Loading Scour	Dragging Burial Loading Scour
		Liquefied Flow		Loading Burial Scour		Compression Burial Loading Scour	Dragging Burial Loading Scour
		Fluidised Flow		Loading Burial Scour		Compression Burial Loading Scour	Dragging Burial Loading Scour
	Turbidity Current	High Density Turbidity Current		Loading? Burial? Scour		Burial Loading Scour	Burial Loading Scour
		Low Density Turbidity Current	R	Scour?		Scour	Scour

Understanding Geohazard Controls

Geohazard Assessment – Multiple Scales / Tools

Geohazard Assessment – Multiple Scales / Tools

Calibration of Slope Systems

Case Study 1 – Calibration of Geophysics for Accurate Frequency / Magnitude Determination

Case Study 1 – Calibration of Geophysics for Accurate Frequency / Magnitude Determination

Case Study 1 – Calibration of Geophysics for Accurate Frequency / Magnitude Determination

Case Study 2 – Calibration of Geophysics for Accurate Process Determination

The Need for Careful Consideration

Scenario Without Calibration	Consideration		
No detailed geohazard core logging	Incorrect determination of fai mechanism/process		
Inaccurate frequency or geohazard process	Inaccurate QRA		
Overestimation of event magnitude	Inaccurate Impact Modelling		
Lack of understanding of geochronological framework	Incorrect assessment of trigg conditioning factors		

The Need for Careful Consideration

Scenario Without Calibration	Consideration
No detailed geohazard core logging	Incorrect determination of fai mechanism/process
Inaccurate frequency or geohazard process	Inaccurate QRA
Overestimation of event magnitude	Inaccurate Impact Modelling
Lack of understanding of geochronological framework	Incorrect assessment of trigg conditioning factors

Conclusions

- For a credible geohazard assessment, it is necessary to **correlate and calibrate** geophysical data
 - **Multidisciplinary integration** should be undertaken on a variety of scales
- Geophysics should inform the **targeting of cores** for detailed geohazard logging
 - The findings should also be integrated to update the geophysical interpretation to maximise yield of all available data
- Without calibration, you run the risk of inaccurately calculating **frequency**, magnitude and geohazard process which may result in:
 - Poor modeling of impact
 - Unrealistic levels of perceived risk in a QRA _____
 - Overly conservative design _____

Thank You

