Brief about Petroleum Activities at IFE

Tor Bjørnstad Chief Scientist Institute for Energy Technology (IFE) tor.bjornstad@ife.no

Subjects not to be treated here

- Multiphase flow in wells and pipelines (OLGA etc.)
- CO₂ and H₂S corrosion in transportation systems
- Hydrate prevention (MEG-technology) and most other flow assurance aspects
- Geology/geochemistry/diagenesis/stable isotope signatures
- Micropaleontology/biomarkers/production allocation
- Basin modelling
- CCS
- Application of tracer technology during exploration

Reservoir characterization

IF₂

Water expelling oil – should be traced

Tracer Technology Research Themes

- Development of radioactive and chemical tracers.
- Testing and verification in laboratory experiments
- Development of hypersensitive analytical techniques for tracers in highly diluted field samples
- Practical implementation in the field
- Development of simulation tools

The «Tracer Club»

The "core" of the tracer development is the "Tracer Club" which is an industry-supported program (JIP) which are being carried out in well-defined development phases:

«Industry standard» interwell water tracers

PETRAD 9 seminar Vietnam

"Industry standard" non-radioactive gas tracers

Perfluorinated cyclic hydrocarbons with coordinated light hydrocarbon (methyl) groups are excellent gas tracers

1,3-PDMCH

1,2,4-PTMCH

Fluorescent and radioactive nano-particles

Nano-particle tracers

Interwell tracer simulator

- Successful implementation of ARTSim tracer simulator
 - Tested by IFE, Statoil and Total on 5 field cases. Conclusion: very fast (5% of reservoir simulator CPU), simple to use
 - 3 journal publications, 7 conference presentations last 3 years
- Presently coupled to Eclipse E100 (black-oil) simulator

ARTSim results in FloViz (Eclipse suite visualization tool)

Tracers in reservoirs

11.06.2013

Preferential flow directions Horizontal and vertical communication between wells Permeability strata Sweep volumes Large-scale heterogeneities

Tracer response after WAG

Remaining oil saturation

11.06.2013

Passive and partitioning tracer flow in a flooding pore of formation rock

FORMAT				
	4			
T	he partitioning ti	acer becomes	delayed with	
re	spect to the pas	sive water trac	cer. 26	
RESIDU	AL OR	8		

K-value (partition coefficient)

- Partitioning tracer in water and oil
- Non-partitioning tracer only in water
- Water moves, oil is (close to) stagnant in EOR cases

 $K = (C_{T_r})_0 / (C_{T_r})_w$

Partitioning tracer – Lab Experiments

Eluted amount (g)

Estimation of S_o by scaling x-axis

Scaling x-axis of the partitioning tracer : $x' = x / (1+\beta)$

β = 0.6 gives match (So=0.24)

 β =0.6, K=1.9 gives saturation: So = $\beta/(\beta + K) = 0.6/(0.6+1.9) = 0.24$

11.06.2013

RTD analysis of PITTs

Must first correct for re-injection & extrapolate to infinity

LAV-1 results

Tracer	β	K	<u>S</u> o [%]
IFE-WTP8	0.6	1.9	24
IFE-WTP7	0.75	2.4	24
IFE-WTP3	0.50	1.5	25
IFE-WTP2	0.50	1.5	25
IFE-WTP1	0.70	2.1	25
IFE-WTP4	0.80	2.9	22

Results are consistent

LAV-2 results

Tracer	β	K	<u>S</u> o [%]
IFE-WTP8	0.55	1.9	22
IFE-WTP7	0.65	2.4	21
IFE-WTP3	0.45	1.5	23
IFE-WTP2	0.45	1.5	23
IFE-WTP1	0.60	2.1	22
IFE-WTP4	0.70	2.9	19

Results are consistent

SWCTT stage 1 injection

Water and ester is injected into watered out section

SWCTT stage 2 hydrolysis shut-in

Some of the ester hydrolyses to alcohol

SWCTT stage 3 back production

The ester partition to oil and is delayed, compared to the alcohol The water tracer is catching up on the partitioning tracer.

IF2

Single Well Chemical Tracer Test Production Curve

Partitioning interwell tracer test (PITT)

- Exploits the delay of partitioning tracers compared to non-partitioning tracers
- Works by injecting partitioning & non-partitioning tracer simultaneously
- Saturation can be estimated by:

$$S_o = (T_p - T_i)/(T_p + T_i(K - 1)) = \beta/(\beta + K)$$

where $T_p = T_i(1 - \beta)$

Enhanced oil recovery

11.06.2013

CO₂–EOR challenges

Synthesis of ³⁵S-labeled surfactant

• Synthesis of the sulfonation agent acetylsulfate:

 $H_2^{35}SO_4 + CH_3 - COOOC - CH_3 \rightarrow CH_3 - COO^{35}SO_3H + CH_3 - COOH$

• Sulfonation of 1-dodecene to get the surfactant:

 $CH_{3}-COO^{35}SO_{3}H + R-CH_{2}-CH=CH_{2} \rightarrow$ R-CH=CH-CH₂-³⁵SO₃H + CH₃-COOH (R = C₉H₁₉)

Less liquid, more CO₂

11.06.2013

Using ²²Na⁺ tracer to monitor water front

IF2

How can CO₂ sweep efficiency be improved ?

- CO₂/foam: What kind of surfactant?
- Increasing viscosity by polymers: What kind of polymer?
- WAG: How long (frequency of) slugs?
- What are the displacement mechanisms with supercritical or dense-phase CO₂?

What injection strategy to follow?

IF₂

Production and flow assurance

Well inflow monitoring

11.06.2013

Complex well inflow monitoring

Generator principles (2)

Experimental setup measurements of scaling kinetics

Column scans

Selected column scans

IF2

True scaling rates at x_i and x_j

Counting rate (cp100s)

IF2

Tracer projects and contacts world-wide

Warning: Spider on drugs

Drug Free Spider

Exposed to Marijuana

Exposed to mescaline\Peyote

Exposed to Benzedrine/ Speed Exposed to LSD

Exposed to Caffeine

