U N I V E R S I T Y O F B E R G E N Department of Physics and Technology

Applications of CO₂ as CCUS Efficient, Cost Saving and More Sustainable Petroleum Production

Geir Ersland, Martin Fernø, Arne Graue Dept. of Physics and Technology

University of Bergen

CCUS (carbon capture, **use** & storage)

Huge Opportunity for the Petroleum Industry

- Produce more from mature fields
- Reduce carbon footprint
- Social license to operate
- Enable vast additional energy resources
- Attracts new generation energy engineers

Advantages with CO₂ compared with water/ HC gas

Effective oil mixing	Decrease oil viscosity
Increase oil flow	Associated CO ₂ storage
Challenges with Low viscosity	CO ₂ Injection Availability
Recycling	Corrosion

OG 21 New Strategy Reservoir Physics Strategy

- 1. Maximize resource utilization
- **Enhance recovery in mature areas**
- 2. Minimize environmental impact
- **Produce oil by injection of CO₂**
- 3. Improve productivity and reduce costs
- Reduce injected gas volumes and production of water
- 4. Develop innovative technologies

UiB patented industrial solutions CO₂ for Oil/Gas production

5. Attract, develop and retain the best talents

Petroleum Research School of Norway, international collaboration, student participation in industry projects

Dept. of Physics and Technology

32 professors 24 Postdoc/researchers **25** technical/administrative **10-15 PhD/year** 50-60 MSc/year **170 MNOK turnover Optics and** Petroleum upstream research atomic physics since mid 1980s

Petroleum and

Process Technology

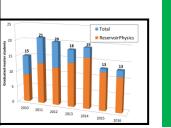
 BIRKELAND CENTRE
FOR SPACE SCIENCE
 170 M

 Space Physics
 Theory, energy and
process technology
 Optics and
atomic physics

 Subatomic
Physics
 Acoustics
 Nanoscale physics
and electronics

Petroleum and Process Technology

Nasjonal forskerskole i petroleumsfag Chairman of the Board Prof. Arne Graue Coordinator Martin Fernø


Chairman of the Board Prof. Arne Graue Secretary function Martin Fernø

5 Faculty

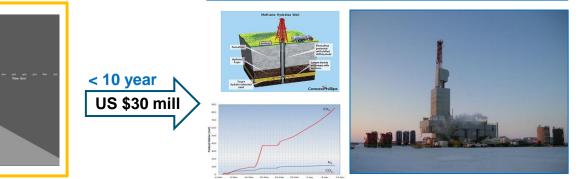
12 PhD

Prof. Arne Graue Prof. Bjørn Kvamme Prof. Tatyana Kuznetsova Assoc. Prof. Geir Ersland Prof. Martin Fernø

- Lead Master program in Petroleum Technology
- Interdisciplinary collaboration with Haukeland University Hospital
- Operate MRI laboratory at Statoil Sandsli
- Strong International Collaboration focus on USA

31 master7 Laboratories

Energy for the Future Gas Production WITH CO₂ Storage in Hydrates


Energy bound in hydrates **is more than combined energy** in conventional oil, gas and coal reserves

UiB Laboratory Verification of Technology

Field Verification of UiB Technology

"While this is just the beginning, this research could potentially yield significant new supplies of natural gas."

U.S. Energy Secretary Steven Chu, May 2nd 2012

DOE, ConocoPhillips and JOGMEC at the Ignik Sikumi test site, Alaska

Excerpt from U.S. Energy Secretary Steven Chu's statement

...to conduct a test of natural gas extraction from methane hydrate using a unique production technology, developed through laboratory collaboration between the University of Bergen, Norway... [D]emonstrated that this mixture could promote the production of natural gas. Ongoing analyses of the extensive datasets acquired at the field site will be needed to determine the efficiency of simultaneous CO₂ storage in the reservoirs.

What are Methane Hydrates?

Methane hydrates are ice-like structures with natural gas trapped inside, and are found both onshore and offshore along nearly every continental shelf in the world.

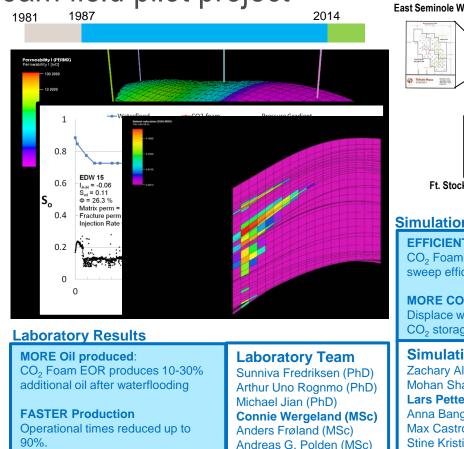
PORE-SCALE **DISSOCIATION** ^aOF^{hnology} METHANE HYDRATE

Lab to Field: CO₂ foam field pilot project

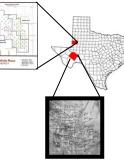
OBJECTIVE

Cost-effective "Roadmap for Success" for CO₂ EOR implementation on Norwegian **Continental Shelf through** onshore field trials in Texas

WHY TEXAS?


- CO₂ is commercially available
- Up-scaling; major challenge in oil recovery
- Fraction of costs of off-shore field tests
- Fast results: short inter-well distances
- 30 years experience in Texas on CO₂ EOR

COLLABORATORS


U. of Bergen		Stanford U.
U. of Bordeaux		National IOR centre
U. of Houston	TU Delft	Schlumberger
Statoil	UT Austin	Shell

FUNDING 15MNOK

Norwegian Research Council, CLIMIT program Oil Industry (Shell, Total, Schlumberger, Statoil)

East Seminole Well Location Map

Ft. Stockton Well Location Map

Simulation Results EFFICIENT Oil Production:

CO₂ Foam EOR increase sweep efficiency

MORE CO₂ stored: Displace water to increase CO₂ storage volume

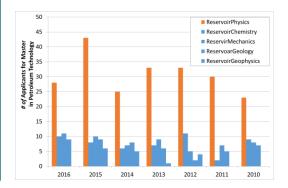
Simulation Team Zachary Alcorn (PhD) Mohan Sharma (PhD) Lars Petter Grønvigh (MSc) Anna Bang (MSc) Max Castro (MSc) Stine Kristiansen (MSc)

Recruitment

international collaboration with reputational academic institutions

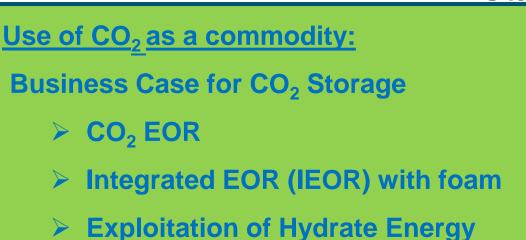
strong student participation in industry projects

Petroleum Research School of Norway


STEP (short term exchange program)

Focus on oil and gas solutions for the future

Reservoir physics students **PET center @ HUS**



Summary

Way Forward

Norwegian technology ready for industrial scale implementation Ongoing onshore in USA Looking for opportunities on NCS, Europe and offshore Asia

