

Using Tracers for Monitoring EOR Performace. Study Case of Snorre Field (Paper SPE 129877)

Outline

- SWCTT
- Background
- Operation
- Results
- Analysis
- Conclusion

Workflow of an EOR project

- SWCTT stands for single well chemical tracer test
- Estimating residual oil saturation
 - Immobile oil saturation
- A commonly used tracer is ester.

Key concepts

• Hydrolisis

$$\begin{array}{c} O & O \\ \parallel \\ CH_3 - C - O - C_2H_5 + H_2O \rightleftharpoons CH_3 - C - OH + HO - C_2H_5 \\ ethyl \, acetate & water & acetic \, acid & ethyl \, alcohol \end{array} \tag{5-1}$$

 $K_d = \frac{C_0}{C_w}$

• Partitioning

How it works

Source: http://chemicalfloodingtechnologies.com

Determination of oil saturation

- Parameters required
 - Partitioning coefficient
 - Tracer concentration curves

$$S_o = \frac{\frac{Q_a}{Q_b} - 1}{\frac{Q_a}{Q_b} - 1 + K}$$

Source: CTI presentation

Impact of Sor changes

Data and facts

- OOIP : 513 MSm3
- Current expected RF : 46%
- Ultimate goal with IOR : 55%
- Porosity : 14 32 %
- Permeability : 0.1 4 D
- Upper /lower Statfjord and Lunde formations
- Potential IOR : low salinity water injection

Source: SPE 129877

Workflow of an EOR project

Core flooding experiment

Table 5. Aver	rage oil recovery/increme	ntal oil recov	very (% OOIP)	
Formation	After flooding stage	<u>lp</u>	hp	all
	 sea water 	37.5	63.7	45.0
	 low salinity sea water 	1.8	3.3	2.2
Upper Statfjord	 low salinity NaCl brine 	2.8	0.2	2.1
	alkaline	0.3	0.0	0.2
	sea water	51.1	58.1	54.6
	 low salinity sea water 	0.4	4.9	2.6
Lower Statfjord	 low salinity NaCl brine 	0.6	1.3	0.9
	alkaline	2.8	0.5	1.6
	 sea water 	65.5	66.5	65.9
	 low salinity sea water 	0.5	0.5	0.5
Lunde	 low salinity NaCl brine 	0.0	0.8	0.3
	alkaline	0.0	0.0	0.0

Source: SPE 129877

SWCTT in Snorre

• SWCTT is performed in well P-7 in a single zone upper statfjord (1.5 meters)

Details of the operation

Table 7. Injected and produced volumes, and rates throughout the SWCTTs (incl. 50 m ³ well bore volume							
Stage	Start date (2008)	End date (2008)	Operation	<u>Vol. inj. (m³)</u>	<u>Inj. rate (m³/h)</u>	<u>Vol. prod.(m³)</u>	Prod. rate (m ³ /h)
1	14 Nov.	20 Nov.	Production for clean up of well				
2	20 Nov.	23 Nov.	Sea water injection	1100	15-16		
3	23 Nov.	24 Nov.	Back-production of sea water			109	16-17
4	24 Nov.	24 Nov.	Sea water injection	110	15-16		
5	24 Nov.	24 Nov.	SWCTT-1 injection	255	17		
6	24 Nov.	28 Nov.	Shut-in SWCTT-1				
7	28 Nov.	29 Nov.	SWCTT-1 back-production			412	19
8	29 Nov.	30 Nov.	Low salinity water injection	225	17		
9	30 Nov.	01 Dec.	Sea water inj. to displace lowsal	180	17		
10	01 Dec.	02 Dec.	SWCTT-2 injection	252			
11	02 Dec.	05 Dec.	Shut-in SWCTT-2				
12	05 Dec.	06 Dec.	SWCTT-2 back-production			408	20-16
13	06 Dec.	07 Dec.	Sea water injection	366	17-16		
14	07 Dec.	08 Dec.	SWCTT-3 injection	251	17-16		
15	08 Dec.	11 Dec.	Shut-in SWCTT-3				
16	11 Dec.	12 Dec.	SWCTT-3 back-production			390	16

Source: SPE 129877

Sequence in each SWCTT

- 3 tracers are being used:
 - **4** Ethylacetate : the main tracer
 - N-propanol : material balance tracer
 - Iso-propanol : material balance tracer
- The sequence
 - **4** 40 Sm³ sea water + ethylacetate + n-propanol + iso-propanol
 - Displaced with 211-215 Sm³ sea water with iso-propanol

The process

Source: Sjevrak and Ibatullin

Sor from SCAL vs. SWCTT

The big question

• Does the difference of the curve separation come from Sor reduction?

Details of the alcohol and ester production

Source: Sjevrak and Ibatullin

Uncertainty analysis

- Tracer concentration
- Partitioning coefficient
- Rate measurement

Tracer concentration

- Common uncertainty of the analytical data from laboratory experiment is ±3%
 - But it doesn't change the curve separation

Partitioning coefficient

- K is sensitive to temperature changes
 - Variation of ±20°C → ±20% deviation in partitioning coefficient (K) → ±2% Sor
 - But the temperature changes between the SWCTTs are far less than 20°C

Source: SPE 129877

Rate measurement

Source: Sjevrak and Ibatullin

TEST no.3

*** * * ***

prod.volume/NPA peak prod volume

Therefore...

- The drift of the alcohol curves is due to the inconsistency of the rate measurement
- No significant reduction in the remaining oil saturation had taken place during the low salinity water injection

Uncertainty evaluation

$$\frac{\Delta S_o}{S_o} = \frac{1}{\left(\frac{Q_a}{Q_b} - 1\right) \left(\frac{Q_a}{Q_b} - 1 + K\right)} \sqrt{\left(\frac{K}{Q_b}\right)^2 \left(\Delta Q_a\right)^2 + \left(\frac{KQ_a}{Q_b^2}\right)^2 \left(\Delta Q_b\right)^2 + \left(\frac{Q_a}{Q_b} - 1\right)^2 \left(\Delta K\right)^2}$$

Conclusion

- SWCTT has a potential for measurement of relative changes in Sor due to an EOR activity including MEOR
- In Snorre case
 - **4** Sor obtained from SWCTT is in line with the SCAL data
 - **4** No significant reduction of Sor identified from both core flooding and SWCTT
 - **4** Rate measurement is the main error source followed by partitioning coefficient
 - Repeated measurements are necessary
 - 4 Injection of mass balance tracer is critical for additional control
 - It is beneficial to have a relationship of partitioning coefficient and temperature from laboratory test
 - Potential uncertainties should be assessed prior to the test

Reservoir fluid drift, irreversible flow, crossflow, thief zone, etc.

There's never been a better time for **GOOD ideas**

Presentation title

Ibnu Hafidz Arief Reservoir Engineer iari@statoil.com Tel: +4790732689

www.statoil.com

Test conditions (Reference CTI)

Variable	Range
 Interval Height 	8 to 104 feet
 Porosity 	7 to 34 %
Reservoir Temperature	80 to 249 Deg. F.
Brine Salinity	1,200 to 270,000 ppm TDS
 Permeability 	4.5 to 6,000 md
Oil Gravity	12 to 49 API
• Sor (PV)	7 to 45%

Impact of hydrolysis rate

Impacts of porosity

Impacts of back production rate

Impact of partitioning coefficient

