

From loose grains to stiff rocks – The rock-physics "life story" of a clastic sediment, and its significance in QI studies

Prof. Per Avseth, NTNU/G&G Resources

The rock physics "life story" of a clastic sediment – a teaser:

Selected references:

- Helset et al., 2004: Combined diagenetic and rock physics modeling for improved control on seismic depth trends (EAGE Abstract)
- Brevik et al., 2011: Rock Physicist step out of the well location, meet geophysicists and geologists to add value in exploration analysis (The Leading Edge).
- Dræge et al. 2014: Linking rock physics and basin history Filling gaps between wells in frontier basins (The Leading Edge).
- Zadeh et al. 2016: Compaction and rock properties of Mesozoic and Cenozoic mudstones and shales, northern North Sea (Marine and Petroleum Geology).
- Avseth and Lehocki, 2016: Combining burial history and rock-physics modeling to constrain AVO analysis during exploration (The Leading Edge).

Reducing uncertainties through integration

Case example from North Sea (Alvheim Field)

Sand and shale compaction trends in the North Sea

Alvheim well (Kneler discovery) Velocity jump in sst due to cementation

Burial history and subsidence curves for top reservoir sst at Kneler well (schematic)

AVO classification constrained by depth trends (Alvheim field, North Sea)

0

0

Intercept

O CS

GCS

-0.4

Rimstad et al. (2012): (Bayesian classification)

Are injectites on Volund cemented or not?

From Schwab et al. 2015

Well log data from 24/9-6

Rock Physics diagnostics of Paleocene sandstone units

Combined modeling of burial history and rock physics

Mechanical compaction (Lander and Walderhaug, 1999)

Combined burial and rock physics modeling of porosity versus Pwave velocity (sensitivity study)

Rock physics and AVO modeling constrained by burial history

1. Burial history

2. Diagenetic modeling (Walderhaug)

3. Rock physics modeling (Dvorkin-Nur)

16

A «typical» present day geo-section offshore Norway

«Restoring» geo-section to maximum burial. Have prospects been into the frying pan?

Burial constrained AVO modeling at "Discovery" well. (Campanian sands w/oil give AVO class III)

19

Burial constrained AVO modeling at prospect A (Paleocene sst) Oil-filled sst = AVO class I-IIp

Paleocene

Prospect A

Cretaceous

Burial constrained AVO modeling at prospect B (Paleocene sand) Oil-filled sst = AVO class III

Burial constrained AVO modeling at prospect C (Aptian sst) Oil-filled sst = AVO class IIp

RPT and AVO analysis @Pingvin well 7319/12-1

Sorting

0.2 Porosity 0.3

0.1

0.5

0

Burial analysis and simulated AVO signatures in Pingvin (7319/12-1)

The reservoir sands in Pingvin has not been buried deep enough to be cemented! Hence, great fluid sensitivity! AVO class III expected for any HC-fill.

Eocene more deeply buried in Sørvestnaget Basin: Burial constrained AVO at well 7216/11-1S

NTNU

Summary: How burial controls AVO and fluid sensitivity

For explorationists, prominent EM-anomalies have less value than sharp reflectors, according to Bent Kjølhamars team (c) EMGS/TGS

Fooled by seismic

Triassic prospects in the Hoop area are overlooked because they lack clear bright seismic reflectors. Click To Tweet

🕒 04.10.2017 🔹 🕹 Halfdan Carstens 🎙 Olje og gass

Conclusions

- The present day seismic signatures will reflect depositional and burial history, and this knowledge should be included in AVO and QI studies.
- Rock physics modeling can be combined with burial modeling for uplift estimation, to constrain low-frequency trends, and to model expected AVO signatures.
- Normally, bright seismic amplitudes and class II-III AVO signatures are only associated with unconsolidated to poorly consolidated sandstones.
- There is likely a lot of «hidden» hydrocabrons (esp. oil) in consolidated sandstone reservoirs with stiff rock frame and reduced fluid sensitivity, that can be challenging to discover during AVO and QI studies.

Acknowledgements

- Thanks to Ivan Lehocki at Lehocki Geospace for contributions to burial modeling codes.
- Thanks to MCG for AVO data on Pingvin
- Thanks to FORCE for the invitation