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▪ The dataset

▪ Why?

▪ Defining:

– Fault threshold pressures

– Fault transmissibility multipliers (and fault thickness)

▪ Implementation in Petrel

▪ Results

▪ Conclusions
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40% of fault

throws <10m

▪ Field:

– Clastic oil reservoir.

– Production by depletion.

▪ All mappable faults included as vertical in regular grid.

▪ Faults statistics:

– 40% of fault throws < 10m.

– Mean throw = 18m.

– Most faults have sand to sand juxtaposed.

▪ Permeability and Vclay:

– Input to threshold pressure and transmissibility calculations. 

– Stochastic simulation with proximal to distal facies classes.

– Co-simulated with porosity.

– Very low Vclay content, but spatial trends exist.

The dataset

Statistics for Fault displacement

Min: 0.00

Max: 152.22

Delta: 152.22

Number of values:95685

Mean: 17.75

Std. dev. 16.21

Variance: 262.85

Sum: 1698588.91

Shallow

Deep
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Why?

▪ Starting-point for modelling is often:

– simplicity first 

– then add complexity.

▪ For Pth and TMs

– RDR functionality not straight forward.

– Cumbersome workflow.

– Add-on (initially) to Petrel («different flavor»).

▪ Concequence

– Constant min and max values are often used.

▪ Initial project

– 3 scenarios defined the fault properties/compartmentalization.

– Base and High case in principal open models. 

– Low-case very segmented with TM=0.

– Low-case was weighted drastically in order to stretch 

the distribution.

– Volume assessment (P90) very pessimistic.

▪ New concept

– Use field data - MICP-measurements and Vcl.

– Use literature and tie industry correlations to field data.

– Calculate fault properties for export to simulator based on

weighted scenarios:

– Fault threshold pressures

– Fault transmissibility multipliers



DEFINING

FAULT THRESHOLD PRESSURE
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▪ Petrel needs

– Relationship between Vcl and threshold pressure.

▪ Threshold pressures are obtained from:

– Industry correlations

– generally based on Pth = f(Kfault) or f(SGR,...) 

– Capillary pressure measurements

– MICP

▪ Need to correlate Pth to mappable petrophysical property.

– Permeability

– Clay content

▪ Definition of Range of uncertainty.

Threshold pressure

Methodology
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▪ Definition(s):

– Entry pressure

– first entry of non-wetting fluid into the largest pores.

– Threshold pressure

– inflection point where there as a continous phase of non-wetting fluid through the pores.

Threshold pressure

Definition
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▪ Industry correlations (Sperrevik, Sorkhabi, Harper) 

show strong correlation between threshold pressure

and permeability.

▪ Host rock permeabilities and Fault rock permeabilities

show similar trends.

▪ This means that Pth vs Host rock data can be used to 

estimate Pth for Fault rock.

▪ FIELD measured MICP data 

– show an Entry pressure trend (blue dots/stippled line) that

is very much in line with the industry correlations.

– the FIELD Threshold pressures are on a higher trend   

(red dots/stippled line).

Threshold pressure

vs permeability

y = 0.3149x-0.465

R² = 0.856
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Threshold pressure

Literature gives different answers

More and more pessimistic estimations
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▪ Based on the results from the previous slide Mid to High case scenarios are defined as:

– A HighHigh case (P=10%) based on Manzocchi Kf and FIELD Pthold correlations

– A High case (P=20%) based on Bretan (SGR, Zmax) 

– A Base case (P=40%) based on Sperrevik Kf and Pth correlations

▪ To cover the Low case scenarios the following cases are defined:

– A Low case (P=20%) based on Kf from Sperrevik and Pentry from FIELD data

– A LowLow case (P=10%) based on Kf from Sperrevik and Pthold from FIELD data  

Threshold pressure

Defining the uncertainty range 

Cases defined as functions in Petrel

(Vcl versus Pth)
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Threshold pressures

Calculated on FIELD

High High caseLow Low case Base case

Sperrevik kf=f/SGR,Zmaz,Zf

FIELD Pth vs kf

Sperrevik kf=f/SGR,Zmaz,Zf

FIELD Pe vs kf

Manzocchi kf

FIELD Pth vs Kf

Bretan

Pth vs SGR

Sperrevik kf=f/SGR,Zmaz,Zf

Sperrevik Pe vs kf

Low case High case

Decreasing Pth
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▪ Can only handle one Pth per fault.

▪ Need to find ONE representative Pth value per fault:

– Estimated by simulating on element model, with one fault.

– Varying the percentage of fault open.

– Only 10% of the fault needs to be open to have an effective drainage from the other side (FIELD specific).

Threshold pressures

Eclipse limitation
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▪ The 10-percentile is found by statistical analysis in Excel.

– Threshold pressures are calculated for each case. 

– Then the calculated fault threshold property is resampled as points.

– The point set is exported to Excel, where the 10-percentile for each fault is calculated (manual work).

– Data is tabulated for import into Petrel uncertainty workflow (Load/Read output sheet per fault and column).

Threshold pressure

Estimation of the 10-percentile (from FIELD data)
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Input to Eclipse

Threshold pressures

P= 10%

P= 20%

P= 40%

P= 20%

P= 10%
Subseismic

T
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h

Fault #

Sperrevik Kf | FIELD Pth

Sperrevik Kf | FIELD Pentry

Sperrevik Kf | Sperrevik Pth

Bretan Pth = f(SGR, Zmax)

Manzocchi Kf | FIELD PthHH case
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DEFINING

FAULT TRANSMISSIBILITY MULTIPLIERS
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Transmissibility multipliers

Methodology

▪ Petrel needs:

– Fault thicknesses

– Industry correlations

– Throw (3D grid)

– SGR

– Vcl parameter

– Throw (3D grid)

– Fault rock permeabilities

– Industry correlations

– Calibration to FIELD data

– Definition of Range of uncertainty.
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Fault thickness
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Fault thickness

From published data

Manzocchi et al (2008) Manzocchi et al (2011)Sperrevik et al (2002)
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Transmissibility multipliers

‘Calibration’ of Kfault vs Vclay functions

▪ Used properties in MSF, LSF and mudstone to calibrate:

– Average Vclay

– Range of Khost permeabilities

▪ Estimate range of Kfault permeabilities for individual facies using:

– Sorkhabi Kf/Kh correlation (High value)

– Extreme Kf/Kh correlation (Low value)

▪ Tune Sperrevik correlations to FIELD data (blue shade) by Zmax:

– Zmax= 3600-5200m match the Kfault range for MSF/LSF

▪ Defined a set of new FIELD specific functions based on the calibrated

facies data for MSF, LSF and mudstone (see right).  

Sperrevik

3600-5200

FIELD 

calibrated functions

MSF

LSF

Mudstone

Fault permeability ca libra tion

Range MSF LSF 'Mudstone '

Vsha le 10-15% 20-25% 50-60%

Vclay 7-10% 14-18% 35-45%

Khost Low 10 0.1 0.0003

High 500 10 0.01

Kf-H-Sorkhabi Low 6.0E-02 2.1E-03 3.1E-05

High 1.0E+00 6.0E-02 4.0E-04

Kf-H-Extreme Low 1.9E-03 8.6E-05 1.7E-06

High 2.6E-02 1.9E-03 1.8E-05

Fault permeability ca libra tion

Range MSF LSF 'Mudstone '

Vsha le 10-15% 20-25% 50-60%

Vclay 7-10% 14-18% 35-45%

Khost Low 10 0.1 0.0003

High 500 10 0.01

Kf-H-Sorkhabi Low 6.0E-02 2.1E-03 3.1E-05

High 1.0E+00 6.0E-02 4.0E-04

Kf-H-Extreme Low 1.9E-03 8.6E-05 1.7E-06

High 2.6E-02 1.9E-03 1.8E-05

Sorkhabi et al (2005) G. Ballas et al (2015)

‘’Extreme’’

‘’Sorkhabi’’ 
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▪ Sperrevik considered pessimistic at Vclay > 30% compared to FIELD calibrated functions.

▪ Conservative approach if used.

▪ Project decision : use ‘calibrated’ Sperrevik Kf functions to represent the TM uncertainty range (Zf=500m).

– Use Sperrevik Zmax=5200 as LOWLOW case with P=10%.

– Use Sperrevik Zmax=4800 as LOW case with P=20%

– Use Sperrevik Zmax=4400 as BASE case with P=40%

– Use Sperrevik Zmax=4000 as HIGH case with P=20%

– Use Sperrevik Zmax=3600 as HIGHHIGH case with P=10%

Transmissibility multipliers

Defining the uncertainty range

Sperrevik

3600-5200

FIELD 

calibrated functions

MSF

LSF

Mudstone
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Input to Eclipse

Transmissibility multipliers (varies per realization | fault throw & Vcl)

Increasing TMs

NOTE: Y-axis min to max vary - Blue dot for reference = 20



IMPLEMENTATION

Petrel
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▪ Combine fault threshold pressures and transmissibility modifiers in 5 scenarios:

– from LowLow to HighHigh

▪ Assign fault thicknesses

– from uniform distribution:

– independent of scenario

▪ Assign probabilities as shown below.

FAULT scenarios

Summary

Case Prob Pth TM F-thickness

HH 10 Manz Spv-3600 R (30-120)

H 20 Began Spv-4000 R (30-120)

M 40 Spv Spv-4400 R (30-120)

L 20 Hejre-Pe Spv-4800 R (30-120)

LL 10 Hejre-Pth Spv-5200 R (30-120)

FIELD Pe

FIELD Pth

R(10-100)

R(10-100)

R(10-100)

R(10-100)

R(10-100)

Bretan
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Petrel

The workflow

The

HH caseLL case Base caseL case H case

* The tabulated Pth needs to be multiplied by 100000 due to a bug in Petrel

*

Output : Pth – one value per fault

TM – variable values per fault/realization



RESULT

Production profiles | Depletion through time
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Result

Production profiles [FIELD] | One realization (P50)

TM=0

For reference

TM=1

For reference
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L case

LL case

Result

Pressure @ Field End | One realization (P50)

Initial pressure

Fully depleted

HH case

Base case

H case

TM=0; Pth=N/A

For reference

TM=1; Pth=N/A

For reference



27

▪ Based on a combination of FIELD data and industry correlations a methodology was developed which 

provided justifiable ranges of threshold pressures and transmissibility modifiers to be used in dynamic 

simulation of fault behaviour.

▪ By assessing alternative fault threshold pressures and fault rock permeability methods the team have:

– obtained larger understanding of the dynamics in the FIELD.

– obtained confidence that the likelihood for small, isolated segments is less.

Conclusions
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– DONG E&P for allowing us to present this topic.
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Thank you


