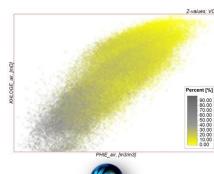


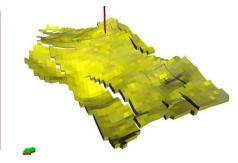
# **Open or closed, or something in-between?**

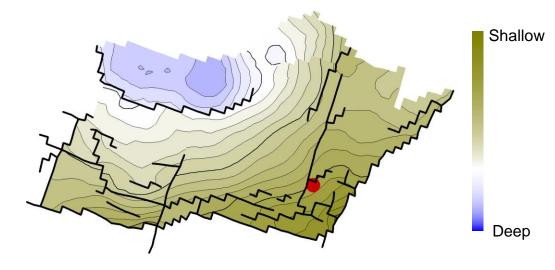
Implementing low to high case behavior of threshold pressures

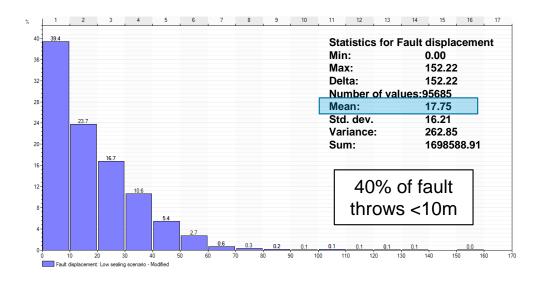
and fault transmissibilities in an uncertainty workflow




Ulf Lægreid | Terje Rudshaug


### Agenda


- The dataset
- Why?
- Defining:
  - Fault threshold pressures
  - Fault transmissibility multipliers (and fault thickness)
- Implementation in Petrel
- Results
- Conclusions


### The dataset

- Field:
  - Clastic oil reservoir.
  - Production by depletion.
- All mappable faults included as vertical in regular grid.
- Faults statistics:
  - 40% of fault throws < 10m.
  - Mean throw = 18m.
  - Most faults have sand to sand juxtaposed.
- Permeability and Vclay:
  - Input to threshold pressure and transmissibility calculations.
  - Stochastic simulation with proximal to distal facies classes.
  - Co-simulated with porosity.
  - Very low Vclay content, but spatial trends exist.







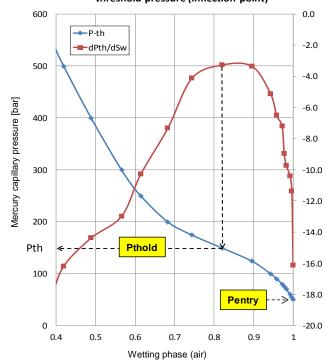


## Why?

- Starting-point for modelling is often:
  - simplicity first
  - then add complexity.
- For Pth and TMs
  - RDR functionality not straight forward.
  - Cumbersome workflow.
  - Add-on (initially) to Petrel («different flavor»).
- Concequence
  - Constant min and max values are often used.

- Initial project
  - 3 scenarios defined the fault properties/compartmentalization.
    - Base and High case in principal open models.
    - Low-case very segmented with TM=0.
    - Low-case was weighted drastically in order to stretch the distribution.
    - Volume assessment (P90) very pessimistic.
- New concept
  - Use field data MICP-measurements and Vcl.
  - Use literature and tie industry correlations to field data.
  - Calculate fault properties for export to simulator based on weighted scenarios:
    - Fault threshold pressures
    - Fault transmissibility multipliers

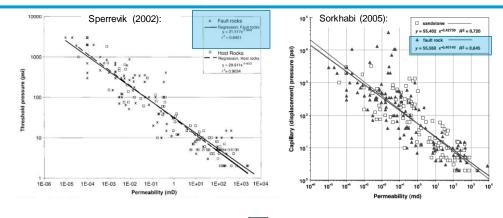


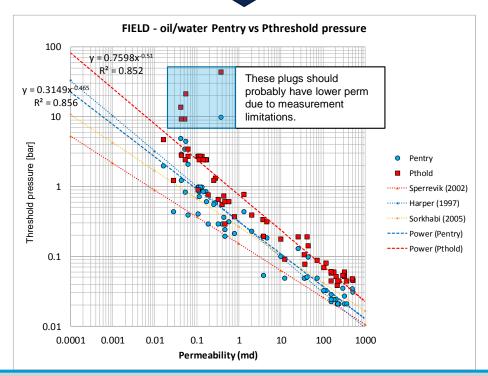



### Threshold pressure Methodology

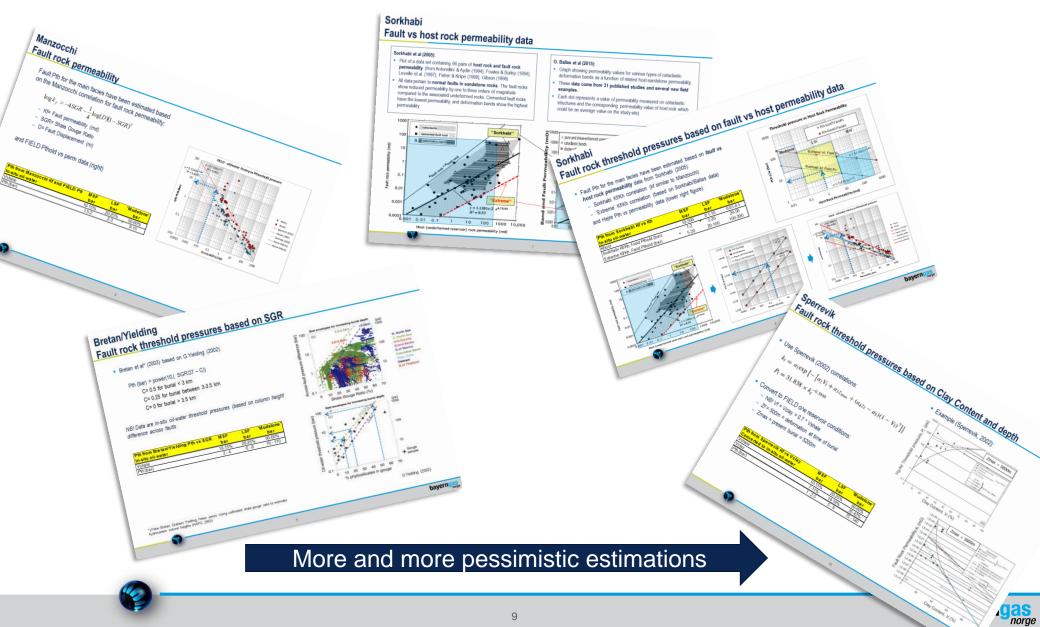
- Petrel needs
  - Relationship between Vcl and threshold pressure.
- Threshold pressures are obtained from:
  - Industry correlations
    - generally based on Pth = f(Kfault) or f(SGR,...)
  - Capillary pressure measurements
    - MICP
- Need to correlate Pth to mappable petrophysical property.
  - Permeability
  - Clay content
- Definition of Range of uncertainty.

# Threshold pressure Definition


- Definition(s):
  - Entry pressure
    - first entry of non-wetting fluid into the largest pores.
  - Threshold pressure
    - inflection point where there as a continous phase of non-wetting fluid through the pores.




threshold pressure (inflection point)

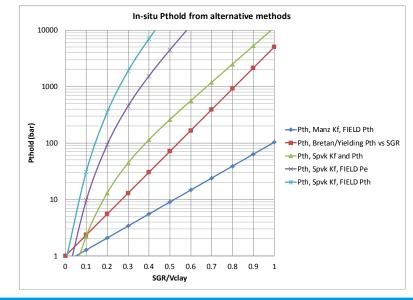

# Threshold pressure vs permeability

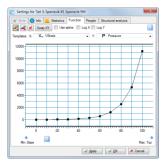
- Industry correlations (Sperrevik, Sorkhabi, Harper) show strong correlation between threshold pressure and permeability.
- Host rock permeabilities and Fault rock permeabilities show similar trends.
- This means that Pth vs Host rock data can be used to estimate Pth for Fault rock.
- FIELD measured MICP data
  - show an *Entry pressure* trend (blue dots/stippled line) that is very much in line with the industry correlations.
  - the FIELD *Threshold pressures* are on a higher trend (red dots/stippled line).



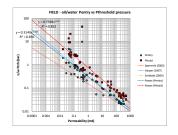


### **Threshold pressure** Literature gives different answers



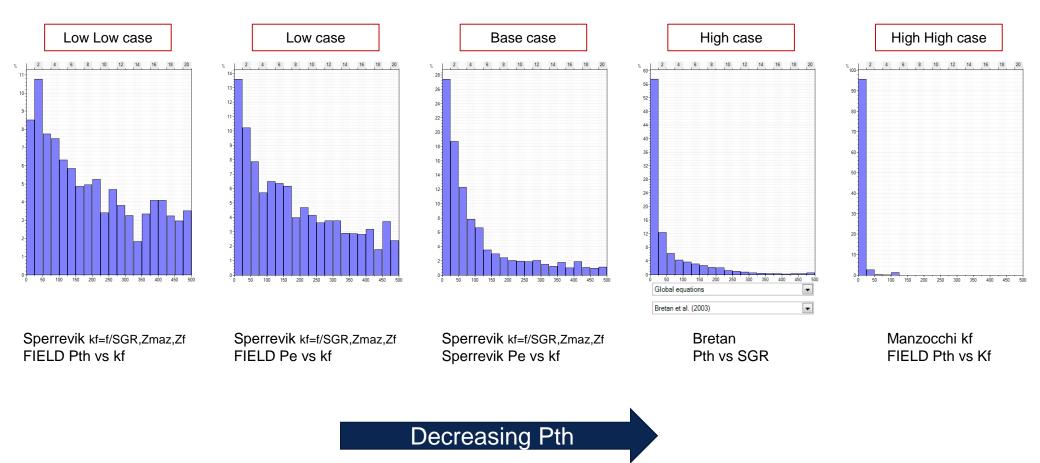


### Threshold pressure Defining the uncertainty range

- Based on the results from the previous slide *Mid to High case scenarios* are defined as:
  - A HighHigh case (P=10%) based on Manzocchi Kf and FIELD Pthold correlations
  - A **High case** (P=20%) based on Bretan (SGR, Zmax)
  - A **Base case** (P=40%) based on Sperrevik Kf and Pth correlations
- To cover the *Low case scenarios* the following cases are defined:
  - A Low case


(P=20%) based on Kf from Sperrevik and **Pentry** from FIELD data

- A LowLow case (P=10%) based on Kf from Sperrevik and Pthold from FIELD data

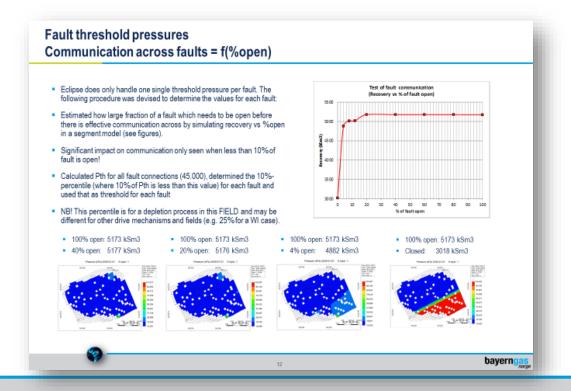





Cases defined as functions in Petrel (Vcl versus Pth)

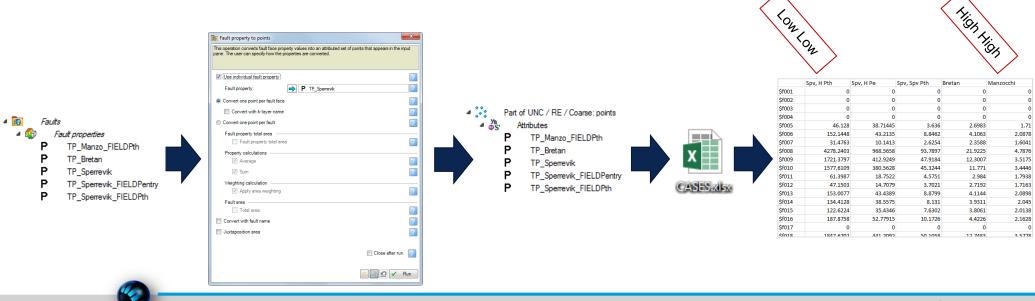




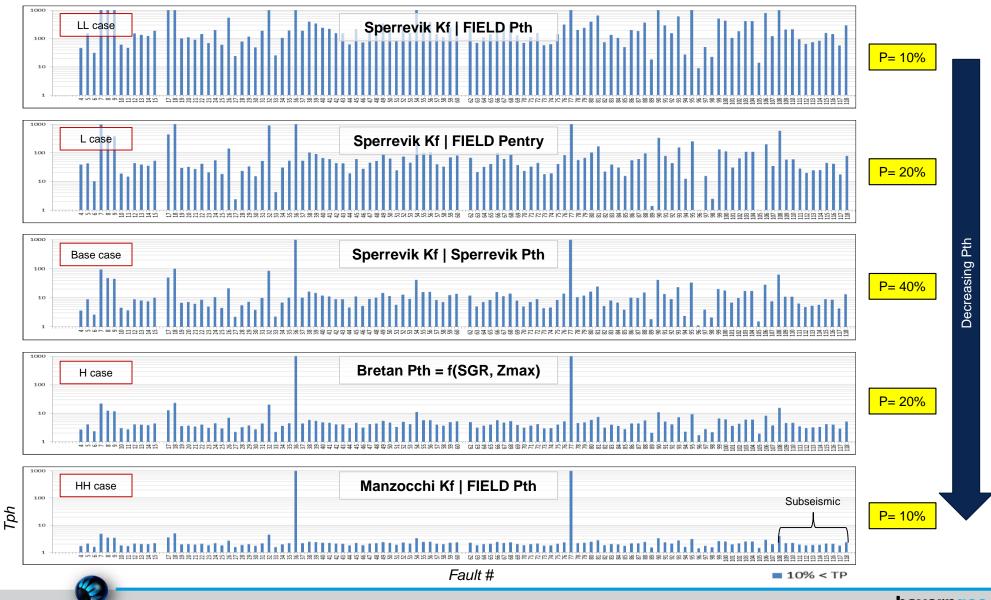

### Threshold pressures Calculated on FIELD






### Threshold pressures Eclipse limitation

- Can only handle one Pth per fault.
- Need to find ONE representative Pth value per fault:
  - Estimated by simulating on element model, with one fault.
  - Varying the percentage of fault open.
  - Only 10% of the fault needs to be open to have an effective drainage from the other side (FIELD specific).

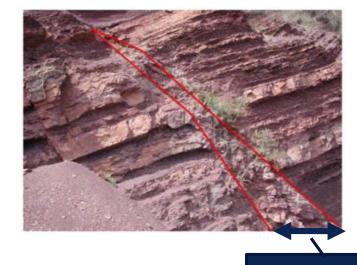



### Threshold pressure Estimation of the 10-percentile (from FIELD data)

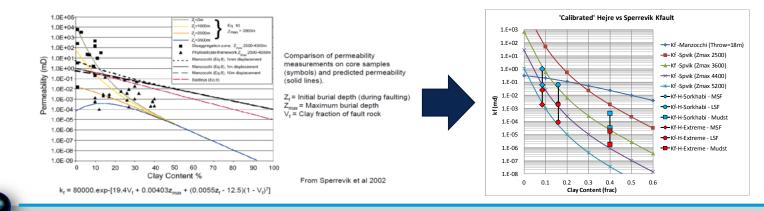
- The 10-percentile is found by statistical analysis in Excel.
  - Threshold pressures are calculated for each case.
  - Then the calculated fault threshold property is resampled as points.
  - The point set is exported to Excel, where the 10-percentile for each fault is calculated (manual work).
  - Data is tabulated for import into Petrel uncertainty workflow (Load/Read output sheet per fault and column).



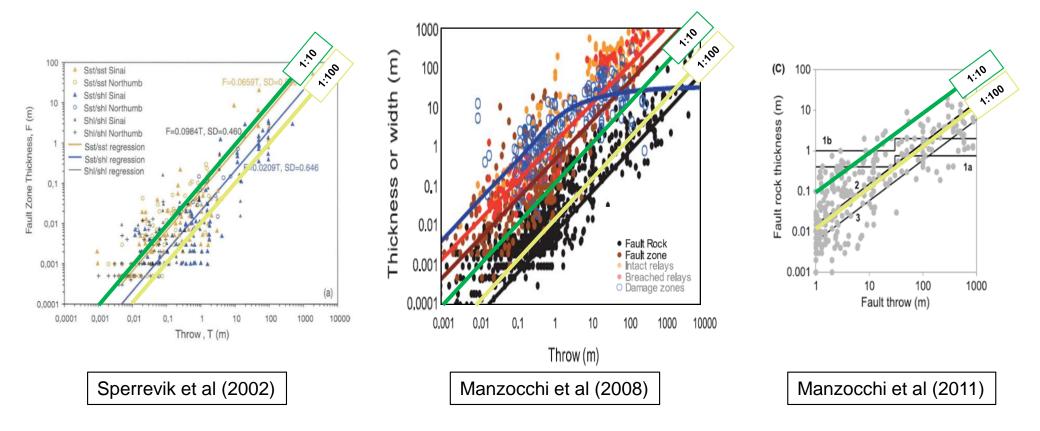
### Input to Eclipse Threshold pressures







# DEFINING FAULT TRANSMISSIBILITY MULTIPLIERS

### Transmissibility multipliers Methodology


- Petrel needs:
  - Fault thicknesses
    - Industry correlations
    - Throw (3D grid)
  - SGR
    - Vcl parameter
    - Throw (3D grid)
  - Fault rock permeabilities
    - Industry correlations
    - Calibration to FIELD data
  - Definition of Range of uncertainty.

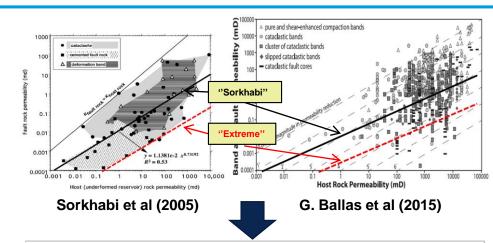


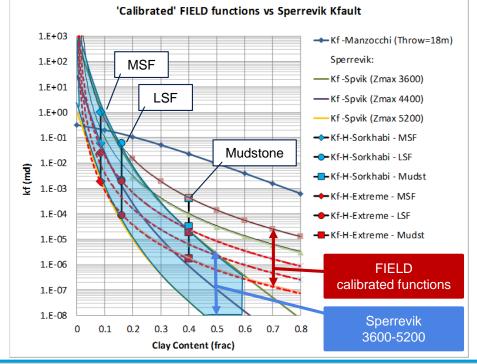
#### Fault thickness



### Fault thickness From published data

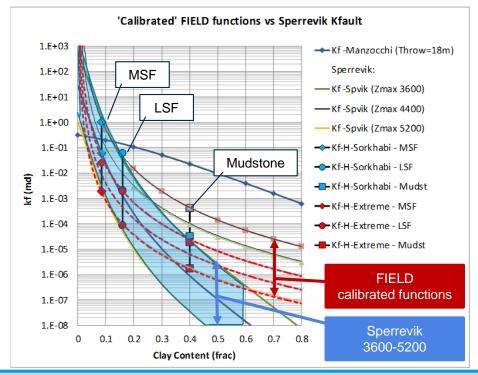




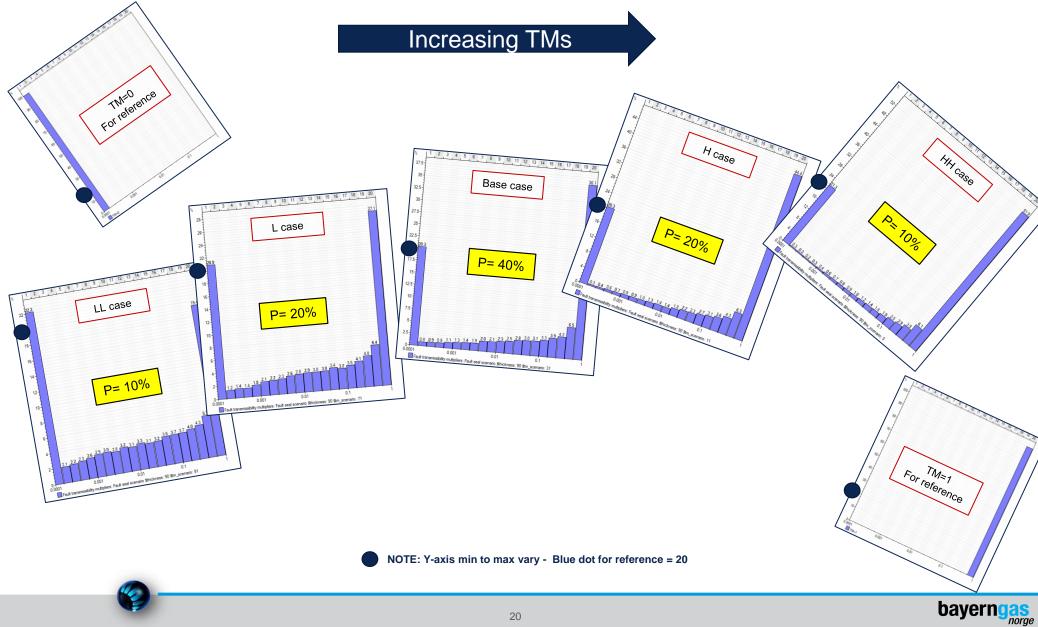


### Transmissibility multipliers 'Calibration' of Kfault vs Vclay functions

- Used properties in MSF, LSF and mudstone to calibrate:
  - Average Vclay
  - Range of Khost permeabilities
- Estimate range of Kfault permeabilities for individual facies using:
  - Sorkhabi Kf/Kh correlation (High value)
  - Extreme Kf/Kh correlation (Low value)

| Fault permeability calibration |       |         |             |         |  |  |  |  |  |
|--------------------------------|-------|---------|-------------|---------|--|--|--|--|--|
|                                | Range | MSF     | LSF 'Mudsto |         |  |  |  |  |  |
| Vclay                          |       | 7-10%   | 14-18%      | 35-45%  |  |  |  |  |  |
| Khost                          | Low   | 10      | 0.1         | 0.0003  |  |  |  |  |  |
|                                | High  | 500     | 10          | 0.01    |  |  |  |  |  |
| Kf-H-Sorkhabi                  | Low   | 6.0E-02 | 2.1E-03     | 3.1E-05 |  |  |  |  |  |
|                                | High  | 1.0E+00 | 6.0E-02     | 4.0E-04 |  |  |  |  |  |
| Kf-H-Extre me                  | Low   | 1.9E-03 | 8.6E-05     | 1.7E-06 |  |  |  |  |  |
|                                | High  | 2.6E-02 | 1.9E-03     | 1.8E-05 |  |  |  |  |  |


- Tune Sperrevik correlations to FIELD data (blue shade) by Zmax:
  - Zmax= 3600-5200m match the Kfault range for MSF/LSF
- Defined a set of new FIELD specific functions based on the calibrated facies data for MSF, LSF and mudstone (see right).






### Transmissibility multipliers Defining the uncertainty range

- Sperrevik considered pessimistic at Vclay > 30% compared to FIELD calibrated functions.
- Conservative approach if used.
- Project decision : use 'calibrated' Sperrevik Kf functions to represent the TM uncertainty range (Zf=500m).
  - Use Sperrevik Zmax=5200 as LOWLOW case with P=10%.
  - Use Sperrevik Zmax=4800 as LOW case with P=20%
  - Use Sperrevik Zmax=4400 as BASE case with P=40%
  - Use Sperrevik Zmax=4000 as HIGH case with P=20%
  - Use Sperrevik Zmax=3600 as HIGHHIGH case with P=10%



### **Input to Eclipse** Transmissibility multipliers (varies per realization | fault throw & Vcl)







# **IMPLEMENTATION**

Petrel

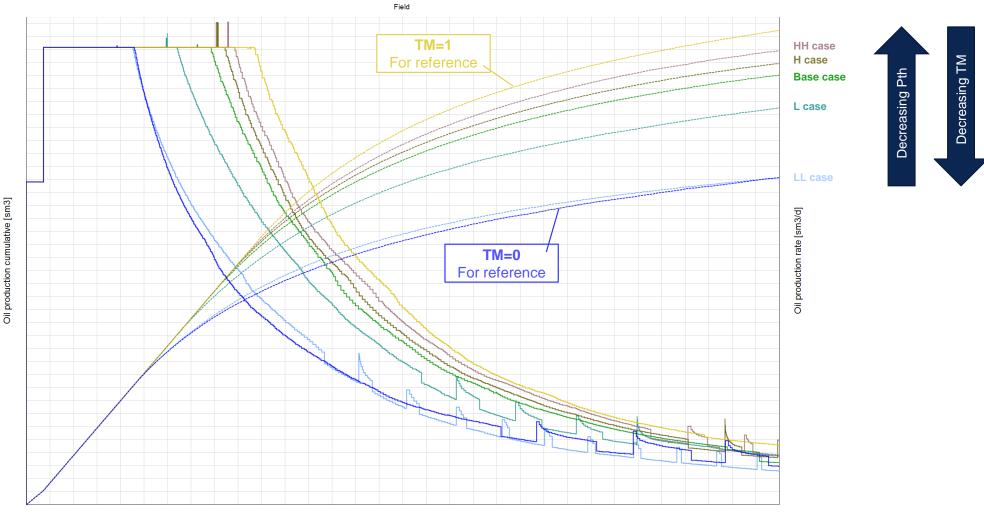
### FAULT scenarios Summary

- Combine fault threshold pressures and transmissibility modifiers in 5 scenarios:
  - from LowLow to HighHigh
- Assign fault thicknesses
  - from uniform distribution:
  - independent of scenario
- Assign probabilities as shown below.

| Case | Prob | Pth TM    |          | <b>F-thickness</b> |  |
|------|------|-----------|----------|--------------------|--|
| HH   | 10   | Manz      | Spv-3600 | R(10-100)          |  |
| Н    | 20   | Bretan    | Spv-4000 | R(10-100)          |  |
| М    | 40   | Spv       | Spv-4400 | R(10-100)          |  |
| L    | 20   | FIELD Pe  | Spv-4800 | R(10-100)          |  |
| LL   | 10   | FIELD Pth | Spv-5200 | R(10-100)          |  |

### Petrel The workflow

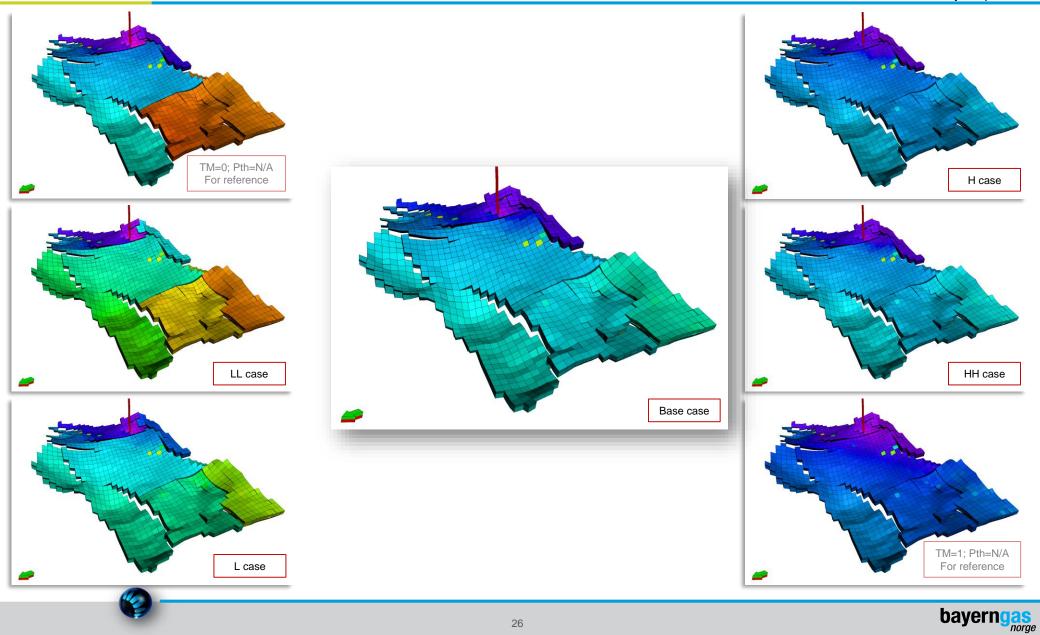
| With       | 3D grid 📄 🎬 For FORCE   P50-H / RE / Co Use: Specified grid 🔹 🕼  | <b></b> 2 | Load output sheet | \Fault_Thresho | ldPressures_INPUT | _UNC.txt         |               |
|------------|------------------------------------------------------------------|-----------|-------------------|----------------|-------------------|------------------|---------------|
|            |                                                                  |           | Read output sheet | \$f001 F       | Row: 2 C          | olumn: \$pth_col |               |
| НН         | - Sperrevik   3600 & Pth_Manzocchi                               | <b>I</b>  | Read output sheet | \$f002 F       | Row: 3 C          | olumn \$pth_col  |               |
| रि 🕼       | m_scenario<10                                                    | L.        | Read output sheet | \$f003 F       | Row: 4 C          | olumn: \$pth_col |               |
| c 🕼        | Create seal scenario Seal scenario: 😰 😰 Scenario [global]        | L.        | Read output sheet | \$f004 F       | Row: 5 C          | olumn: \$pth_col |               |
|            | lumeric expression \$pth_col = 6                                 |           | Read output sheet |                | Row: 6 C          | olumn: \$pth_col |               |
| Į Į F      | Run 📄 🔂 14b_Fault_ReadPth 🛛 🕅 Nested variables                   | IF1       | Pood output aboat | ef00c 0        | Pour: 7 C         | aluma: Cath cal  |               |
|            |                                                                  |           |                   |                |                   |                  |               |
|            | H - Sperrevik   4000 & Pth_Bretan                                |           |                   |                |                   |                  |               |
| · · ·      | If \$tm_scenario<30                                              |           | LL case           | L case         | Base case         | H case           | HH case       |
| _ <u> </u> | Create seal scenario Seal scenario: 😰 Scenario [global]          |           | Spv, H Pth        | Spv, H Pe      | Spv, Spv Pth      | Bretan           | Manzocchi     |
|            | lumeric expression \$pth_col = 5                                 | \$f001    | 0                 | 0              | 0                 | 0                | 0             |
| L] F       | Run 📄 🔂 14b_Fault_ReadPth 🛛 Vested variables                     | \$f002    | 0                 | 0              | 0                 | 0                | 0             |
|            | B - Sperrevik   4400 & Pth_Sperrevik                             | \$f003    | 0                 | 0              | 0                 | 0                | 0             |
|            | If stm_scenario<70                                               | \$f004    | 0                 | 0              | 0                 | 0                | 0             |
| · · ·      | Create seal scenario Seal scenario: 👔 Scenario [global]          | \$f005    | 4612800           | 3871445        | 363600            | 269830           | 171000        |
| · ·        | lumeric expression \$pth_col = 4                                 | \$f006    | 15214480          | 4321350        | 884620            | 410630           | 208780        |
| Г. F       | Run 📄 🔂 14b_Fault_ReadPth 🛛 🕅 Nested variables                   | \$f007    | 3147630           | 1014130        | 262540            | 235880           | 160410        |
|            |                                                                  | \$f008    | 427824030         | 96856580       | 9378970           | 2192250          | 478760        |
|            | L - Sperrevik   4800 & Pth_Sperrevik_HejrePe                     | \$f009    | 172137970         | 41292490       | 4791840           | 1230070          | 351750        |
| ~          | If \$tm_scenario<90                                              | \$f010    | 157761090         | 38056280       | 4731840           | 1230070          | 344460        |
| 🛛 🕸 🤇      | Create seal scenario Seal scenario: 👔 😰 Scenario [global]        | \$f010    | 6139870           |                | 4532440           | 298400           |               |
|            | lumeric expression \$pth_col = 3                                 |           |                   | 1875220        |                   |                  | 179380        |
| L F        | Run 📄 🔂 14b_Fault_ReadPth 🔍 Nested variables                     | \$f012    | 4715030           | 1470790        | 370210            | 271920           | 171630        |
|            |                                                                  | \$f013    | 15300770          | 4343890        | 887990            | 411440           | 208980        |
| }{≁ Else   | LL - Sperrevik   5200 & Pth_Sperrevik_HejrePth                   | \$f014    | 13441280          | 3855750        | 813100            | 393110           | 204500        |
|            | Create seal scenario Seal scenario: 👔 Scenario [global]          | \$f015    | 12262240          | 3543460        | 763020            | 380610           | 201380        |
|            | Iumeric expression \$pth_col = 2                                 | \$f016    | 18787580          | 5277915        | 1017260           | 442260           | 216280        |
|            | Run 🕞 🔂 14b_Fault_ReadPth 🛛 Vested variables                     | * TI      | ne tabulated Pth  | needs to be r  | nultiplied by 10  | 0000 due to a    | bug in Petrel |
|            |                                                                  |           |                   |                |                   |                  |               |
| Endif ل    |                                                                  |           |                   |                |                   |                  |               |
|            |                                                                  |           |                   |                |                   |                  |               |
| 🕼 Struc    | tural and fault analysis Effective cross-fault transmissibility: | Output :  | Pth – one         | e value        | per fault         |                  |               |
|            |                                                                  | -         | TM – vari         | able va        | lues ner          | fault/re         | alization     |






# RESULT

### Production profiles | Depletion through time


### Result Production profiles [FIELD] | One realization (P50)



Time [days]

### **Result** Pressure @ Field End | One realization (P50)

Fully depleted



26

- Based on a combination of FIELD data and industry correlations a methodology was developed which provided justifiable ranges of threshold pressures and transmissibility modifiers to be used in dynamic simulation of fault behaviour.
- By assessing alternative fault threshold pressures and fault rock permeability methods the team have:
  - obtained larger understanding of the dynamics in the FIELD.
  - obtained confidence that the likelihood for small, isolated segments is less.



### Thank you

- Bayerngas Norge would like to thank:
  - DONG E&P for allowing us to present this topic.
  - Russell Davis, Schlumberger, for discussions.
  - Susanne Sperrevik, MVEST Energy, for discussions.

- ...and YOU for listening!