

PESGB sand injectite 'master class' Croydon 07 Feb 2017 Hydrocarbon Habitats – Injectites, Oslo & Stavanger 16-17 Feb 2017 Geological Society – Sand Injectites, London, 22-23 March 2017 FORCE Underexplored Plays III, Stavanger, 31/10-01/11 2018 Coming soon: Geological Society Special Publication

Sandstone intrusions and landslides in the North Sea

Mads Huuse¹ & Andrew Hurst²

Sand Injection Research Group ¹Basin Studies and Petroleum Geoscience Group, University of Manchester ²School of Geoscience, University of Aberdeen

With input from numerous colleagues in academia and industry, PhD and MSc students since 2000...

Deep-water sand bodies in literature 2016

References on Google scholar

Depositional sandstones:

- Turbidites : 57 200
- MTDs : 2 060

Remobilized sandstones:

Sandstone intrusions : 141

MANCHESTER 1824

Deep-water sand bodies in the literature 2017

References on Google scholar

Depositional sandstones:

- Turbidites : 56 700
- Debrites: 2440
- MTDs: 3180
- MTCs: 1340

Injected sandstones:

- Sandstone intrusions: 555
- Sand injectites: 648

MANCHESTER 1824

Eocene Alba Field (Grid sst): 1B bbl field discovered by mistake...

MANCHESTER 1824

Basin studies

Image quality is clearly important..

Huuse et al. 2003: First Break; Huuse et al. 2007: AAPG Memoir 87

Porosity and permeability generally very high 30-40%, 1-10 D @ 1.6-2.0 km depth

Alba Field (M Eocene Outer Moray Firth)

Table 1. Statistical parameters for porosity and permeability Permeability (mD) Porosity (%) median mean n mean median Stratified 329 36.47 36.4 327 4046 3740 sandstones 33.85 33.8 205 2360 Unstratified 206 2548 sandstones

n, number of samples.

MANCHESTER 1824

P A A

Balder Field (U Paleocene Utsira High)

Reservoir properties of sand injectites

A. Hurst et al. / Earth-Science Reviews 106 (2011) 215-246

Basin studies

MANCHESTER 1824

The University of Manchester

Interpretation depends on data type, data quality, and mindset..

Laccolith and marginal dykes (+ extrudite)

Conical injectite

Paleocene sand remobilization at base of palaeo-depositional slope: 35/11 (NE North Sea)

MANCHESTER 1824

University Anchester

Dmitrieva et al. 2012: Petroleum Geoscience

Depositional vs Remobilized and Injected Sandstones: NNS

O Olobayo, PhD Manchester, 2015

Basin *studies*

ie Universi Manchest MANCHESTER

Spatio-temporal distribution of sand injectites

O Olobayo: PhD, Manchester, 2015

Structural-stratigraphic setting of large-scale sand injectites in the South Viking Graben & Utsira High

Isolated massive sandstone mounds in the South Viking Graben: Balder (earliest Eocene) thickness and TWT structure

Basin studies

MANCHESTER 1824

University

studies

Steep-sided Balder sandbodies with "wings", Norwegian Block 24/9

Different reflection characteristics due to variations in pore fluid and cementation, and seismic acquisition/processing

24/9-3 Gamma (24/9-4) & 24/9-12 Frosk

24/9-5 Grieg 24/9-7 Volund

SIRG Phase I (2000-2002)

100+ Mb oil field in completely injected sandstones: Volund crosscutting 200 m stratigraphy

MANCHESTER 1824

Eocene Intrusions in outcrop

MANCHESTER 1824

UB: Sill dominated (up to 30m thick)+ dykes MB: Medial Belt (Sill + dykes) LB: Parent unit (Domengine sands)+ intrusions

Looks like wings departing from parent units. Circular in 3D

A sizeable pool on the median line: Gamma (N24/9-3, -4): Legacy data and model vs re-processed data and re-mobilized model

MANCHESTER 1824

The University of Manchester

More than one model can explain observations..

Huuse et al. 2007: AAPG Mem 87

Landslides as sources of isolated and remobilised sandy bodies?

Nissen et al. 1999: TLE

₩ Models.. MANCHESTER 1824 UNIVERSITY OF ABERDEEN Balder (Odin) depositional Mass transport deposits sandstones sculped by Fully Intruded sandstone bottom currents 3 possible origins: 1/ Deposition of Dornoch delta 1/ Deposition of Dornoch delta 1/Deposition of Dornoch delta Dornoch delta Dornoch delta Dornoch delta Fully intruded \bullet 2/ Deposition of Odin Sst (Early Balder) 2/ Deposition of Balder and Frigg Fm 2/ Deposition of Odin Sst (Early Balder) Sculpted by bottom ulletcurrents/erosion Top Frigg Top Balder MTDs / slide blocks \bullet 3/ Remobilisation and injection of Dornoch 3/ Slide blocks = MTDs 3/ Erosion by bottom currents (+Heimdal ?) sandstone near top Frigg age. 6 3 4/Deposition of Balder and Frigg Fm 4/Deposition of Balder and Frigg Fm 5/ Sandstone remobilisation and injection 5/ Sandstone remobilisation and injection near top Frigg age. near top Frigg age. Top Frigg Top Frigg Top Balder Top Balder Bureau et al 2017

Killer evidence !??

Jig saw geometry v jack-up v Balder drape v wings/crestal injectites

Final state

Sandy

blocks

Jigsaw organisation

- Balder thickness preserved above sandy blocks
- Pelagic sedimentation = drape

Problems:

- How to move sandy blocks without destroying them?
- How to form perfect drape?
- Trigger mechanisms?

Solution to conflicting observations: more than one way to form injectites and sometimes they have been superimposed..

2km

Initial state

North Sea Injectite Stratigraphy (in progress since 2000..)

Applying diagnostic criteria: often not that easy

Chalk slides below Eocene, Oligocene, Miocene, Pliocene (and Pleistocene?) 'injectites' - Landslides easy to recognise when not polygonally faulted..

Broadband 3D seismic section (W-E) from Gullfaks to Måløy Platform: multiple disturbed intervals: Paleocene, Eocene, Oligo-Miocene, Pliocene, and areas of no disturbance

V-brights and Hordaland mounds

Paleocene+Eocene depo sst, Hordaland mounds

Fast Track NVGMERGE broadband 3D seismic data courtesy of CGG

Upper Hordaland sands supplied NW from UK, West from Norway

Fast Track NVGMERGE broadband 3D seismic data courtesy of CGG

SUMMARY..

- At least 7 sand injection events in the North Sea
 - 8-10 Myr interval
 - some 3-500 m of sedimentation between each episode
- Exploration targets, risks and hazards
- Excellent reservoir properties (30-40%, 1-10D)
- New images facilitate large-scale understanding
 Importance of landslides in isolating sandy blocks and wholesale translation down-slope
 - Importance of palaeogeography, slope processes and diagenesis as important as 'the usual suspects' (tectonics, petroleum migration..)
- Complex geometries, patchy cementation and variable fluid contents complicate prediction, but seismic images and daring oil companies are catching up!

Thanks to: O Olobayo, D Bureau, CGG, PGS, TGS, Schlumberger, Eliis, SIRG Ph3 sponsors

