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Former considerations: Upper Continental Crust  

  Fluid absent, impermeable 
  In numerical models of hydrogeologists: fluid tight basement 
 Deep geothermal exploration: concept of Hot-Dry-Rock (HDR), thermal 

energy is stored exclusively in the rock. Thus, to harvest the energy, 
fractures had to be created artificially → fracturing: 
 Los Alamos, Urach3, Cornwall etc. 

 Nagra, CH: disposal of high-level radioactive waste: crystalline basement 
rocks as geological barrier 
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Outline 

"   Groundwater in the Upper Continental Crust - Observations 
 
"   Hydrogeologist‘s experience – wet continental crust 
 
"   Permeability of crystalline basement 

"   Example: KTB pumping test 
 
"   Flow – Thermal springs 
 



Institute of Applied Geosciences, Geothermics Division 4 11/9/18 Ingrid Stober 

“Groundwater” in the continental crust 
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Upper Continental Crust: 
Descriptions of drilling foremen, geophysical logs of 
boreholes together with geological profiles, and findings in 
mines show that water-bearing features are related to: 
 
•  Fault and fracture zones, rock bodies extremely 

damaged by brittle deformation zones of sheared, 
broken, shattered, and crushed rock (breccia).  

•  Contact zones between granitic rocks (granites, granite 
dykes and granite porphyries) and paragneisses (also 
intensively fractured granite dykes within 
paragneisses). 

•  Old circulation-path like: hydrothermally altered or 
deformed zones, mineral veins or open fractures filled 
with minerals. 

The majority of the common biotite-rich gneisses on the 
other hand could be extremely low permeable. 
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Groundwater in the Upper Continental Crust - Observations .
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KTB - German continental deep 
drilling program, to 9.1 km 

Kola - Russian super deep well 
on the Kola peninsula, to 12.5 km 

The Upper continental crust 
is not dry, it is water 
conducting! 
 
Interconnected water-
conducting pore-space  
(e.g. fractures, fault zones)  
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Observations: Gotthard Rail Base Tunnel 

 
 
 
European Rail  
Systems 
 

above the tunnel 
up to 2700 m oberburden 
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In the Gotthard Rail Base Tunnel 

water inflow 
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Cross section and locations of water sampling in the GRBT 

Length: 10 km 

granites and gneisses 
 
units are steeply dipping 
 
meteoric water flows along 
fractures (parallel to 
gneissosity) 
 
150 water samples along 
Amsteg section 
 
along flow path: reaction 
of the fluid with the rock 
matrix 
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Observations in rocks: 
 
Geochemical 
indications of young 
and older (former) 
water conducting 
features 
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In 1970s the deep crystalline basement was thought to be dry and  
without open fractures (Hot-Dry-Rock). 
 
Therefore distinct hydraulic stimulation techniques from the oil 
industry were used with the intention to create artificial open fractures 
to extract the Earth‘s heat from the rocks. Investigated depth: 2-5 km. 
 
These tests showed that the creation of new hydraulic fractures was 
not the dominant process. It was the opening, widening and 
sometimes the shearing of natural joints, depending on the induced 
pressure. 
 
The fracture pore space of the upper part of the continental basement 
rocks is filled with an aqueous fluid. The crustal basement is a 
confined, fractured hard-rock aquifer of low permeability with water 
present in an interconnected fracture system. 
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Hydrogeologist‘s experience: Wet continental crust 
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Water conducting fractures are interconnected over large volumes 

Rise and fall of the Earth 
surface 2 times per day (earth-
tides), causes fluctuations of 
water table in deep boreholes 
due to compressibility of up to 
18 cm.  
 
Porosity of crystalline 
basement is very low (~ 0.5%). 
Thus, a huge volume of 
interconnected pore space in 
fractures reacts. 
 
 
Depth of Urach3 borehole: 4444m 

Hydrogeologist‘s experience: Wet continental crust 
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Long-lasting 
pumping-tests, 
KTB-site,  
4 km depth: 
• rate ± 86 m³/d (1 l/s) 
• 1 year 

Water conducting 
fractures are 
interconnected over 
large volumes 

Hydrogeologist‘s experience: Wet continental crust 
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Pressure-dependence of hydraulic conductivity 

In the Urach borehole (depth: 4444 m) many low- 
and high-pressure injection-tests of up to 660 bar 
well-head pressure were carried out. 
 
During hydraulic injection-tests with well-head 
pressures below 176 bar, the natural capacity of 
the rock to absorb water is tested, resulting in the 
magnitude of the rock’s natural permeability.  
 
→ standard hydraulic test, no elastic reaction, no 
widening of fractures, no creation of new fractures. 

Hydrogeologist‘s experience: Wet continental crust 

Q = 70 m³/d 
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During hydraulic tests with well-head 
pressures above 176 bar, permeability of the 
crystalline basement rocks increases 
dramatically, due to the elastic reaction of the 
rock: open fractures were widened. 
(negative slope). 

The pressure-dependence is 
described in terms of power laws 
relating injection rate (Q) to 
fracture width (w) 

w = 8.14 10-7 / Q-2.50 

Due to the lack of shear stress, rock reacted elastic; therefore no significant remaining increase in 
hydraulic conductivity after any high-pressure test. 

High pressure-tests in the open-hole (and perforated sections), Urach borehole 

Hydrogeologist‘s experience: Wet continental crust 

p = 154.5 Q0.251 

864 m³/d 86.4 m³/d 2732 m³/d 
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In the upper part large variability of permeability (several 
log-units), with highest values  similar to  those of gravel-
aquifers. 

Permeability of crystalline basement  

In highly deformed areas granite seems to be more 
permeable  than gneiss.  

In weakly deformed areas the conductivity of granite can be very low. 

Permeability data are based on hydraulic tests  
(pumping tests)  

•  in a test section H [m] 
•  transmissivity T [m2/s] of the tested rock 
•  convert T into hydraulic conductivity K [m/s] 
•  convert K into permeability κ [m2] or [D],  

 fluid parameters (ρ, µ) are needed. 
 

Investigation areas: Central Europe 

H 

total: 21.4 mD 
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Permeability decreases with depth:  
log κ = -1.38 log z - 15.4    with: κ (m2) – permeability;  z (km) – depth 
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K = κ ρ g/µ geophysical modeling 
Ingebritsen & Manning 1999 
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Stober & Bucher 2006 
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Location of KTB test site 

modified from  Zulu & Duyster, 1997 

Federal
Republic

of
Germany

KTB

KTB site: 
Central Germany 
two boreholes: 
4000 m, 9100 m 
crystalline basement 

.

KTB
scientific well

Erzgebirge

Prag ue

Harz

Spessart

Oden-
wald

Bl
ac

k 
Fo

re
st

Wroclaw

compressional
fault

str ike-slip
fault

normal
fault

Variscan
basement

Munich

Alpine orogenic front

Ca
rp

at
hi

an
fro

nt

0 50 100 km

Eger Graben

Upper

Rh
in

e
G

ra
be

n

Franconian
lineament



Institute of Applied Geosciences, Geothermics Division 18 11/9/18 Ingrid Stober 

modified from Harms et al., 1997 

KTB-boreholes 
 

main hole (HB): depth 9100 m 
pilot hole (VB): depth 4000 m 

Lithological units 
• paragneisses 
• amphibolites 
• paragneisses interlayered 
     with metabasites 

KTB-pilot hole 
casing and cementation: to 3850 m depth 
open hole: 3850 - 4000 m, 6” 
bottom hole temperature: 120˚C 
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During the one year pumpingtest an 
amount of 23,100 m3 water was removed 
from the crystalline basement rocks at 
4000 m depth. 
 
This water derived from a rock-volume of 
about 4,620,000 m3 (n = 0.5%) or from a 
radial distance of up to 310 m around the 
150 m long open-hole. 
 
Water composition was constant during the 
pumping test: 
TDS = 62.4 g/kg; pH = 7.8 (at 25°C);  
Cl = 38.7 g/kg; Ca = 15.8 g/kg; Na = 6.4 g/kg;  
Gases: N2 = 68% vol.%; CH4 = 31 vol.% 
 
Thus the fracture-system in the crystalline 
basement is interconnected.  
 
The fractured Upper Continental Crust is 
water saturated and behaves like any other 
near surface aquifer.  
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Deep circulation systems (some 1000 m depth): 
• thermal springs 
• upwelling of saline water (± constant TDS) 
  
Downstream of cold low mineralized water due to the 
hydraulic gradient occurs in open water conducting 
fractures being interconnected with each other over large 
volumes.  
 
Faults (damage zone) drain the fracture water and lead it to 
the surface due to the overall gradient. 

Flow of water in crystalline basement 
Deep circulation-systems (thermal springs) 
 
Water flow needs a driving force:  
Topographic gradient induces a hydraulic gradient 
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Flow: 

Mechanisms of water flowing 
 

Water-conducting features, e.g. permeability 
+ 

Some kind of a motor, a driving force 

As driving force can act: 
 
•  Hydraulic gradient due to topography 
•  Earth tides 
•  Thermal or hydrochemical gradients 

Da Qaidam 

Tianshan 

Black Forest 

The higher the surface gradient, the deeper the circulation! 



Institute of Applied Geosciences, Geothermics Division 22 11/9/18 Ingrid Stober   
talc veins in peridotite (olivine) 

Earth-tides keep fluids in motion 
and are kept chemically active 

Fluids in the Upper Continental crust  
are generally not stagnant: 

In areas with topography we observe 
deep circulation systems, origin of 
thermal springs. 

Stagnant fluids, an unrealistic concept 

As a result, overall equilibrium is not achieved and 
the fluids unceasingly react with the rock matrix 
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Summery / Conclusions 
 
• large variability in permeability in the upper part of the brittle crust 

• granite seems to be more permeable  than gneiss (in highly deformed areas) 

• decrease of permeability with increasing depth 

• interconnected open fracture-system over large volumes 

• topographic gradient: deep circulation, thermal springs 

• fluids in the Upper Continental Crust are generally not stagnant  
 (earth-tides, deep circulating systems, thermal or hydrochemical 

gradients,….) 
 
Modelling Crystalline Basement Rocks: gigantic, interconnected, open fracture-
systeme (i.e. permeability), fluid flow, deep circulation systems  
 
 

Thank you very much for your interest! 
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Deep cross-formation-flow including flow through 
high permeable 
granite + gneiss 

In the Upper Rhine Graben 

Examples of hydraulic gradients as driving forces 

Topographic differences  often induce hydraulic gradients 
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With increasing depth, open 
fractures tend to be vertically 
orientated, because vertical 
pressure increases stronger than 
horizontal pressure. 
 

Change of fracture-orientation 
with depth 
 

Deep circulation-systems 

after:  Brown & Hoek 1978, 
 Valley & Evens 2003  
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