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Interest in the literature SE I S COPE
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difficulties and solutions through decades SE I S COPE

• data type

• cycle-skipping

• multi-parameters sensitivity and non-linearity

• FWI with reflections

• computational cost

• high frequency FWI
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Data type: reflection versus/and diving waves SE I S COPE

Mora (1989)

• In the 80’s: short-offset data only → FWI as a non-linear migration

, but already seen the interest of

“transmissions”

• In the 90’s: reinvestigation of FWI in the 90’s by Pratt’s group, for cross-well data (in 2D

frequency-domain) → success thanks to transmissions (and cheaper HPC cost)
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Data type: reflection versus/and diving waves SE I S COPE

Mora (1989)

Pratt (1999)

• In the 80’s: short-offset data only → FWI as a non-linear migration, but already seen the interest of

“transmissions”

• In the 90’s: reinvestigation of FWI in the 90’s by Pratt’s group, for cross-well data (in 2D

frequency-domain) → success thanks to transmissions (and cheaper HPC cost)
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Data type: reflection versus/and diving waves SE I S COPE

Sirgue et al. (2010)

• In the 2000’s: first 2D and 3D applications

from long-offset surface data (reflections and

transmission)
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Reflection and diving waves: requirement of anisotropy SE I S COPE

Prieux et al. (2011)
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Reflection and diving waves: requirement of anisotropy SE I S COPE

Prieux et al. (2011)

all waves-types needs to be fit: anisotropy is com-

pulsary to account all propagation directions
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Cycle-skipping SE I S COPE

Virieux and Operto (2009)

Bunks et al. (1995)
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Cycle-skipping: hierachical approaches SE I S COPE

Sirgue and Pratt (2004)
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Cycle-skipping: kinematics misfit functions SE I S COPE

WET from Luo and Schuster (1991)

but also Tape et al. (2009); Fichtner et al. (2008) in

seismology, or dynamic-time warping (Ma and Hale,

2013)

More recently in the industry: Adjustive FWI

(Schlumberger), Time Lag FWI (CGG), Travel Time

FWI (TGS)
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Cycle-skipping: misfit functions SE I S COPE

Adaptive Waveform Inversion from Warner and

Guasch (2016)
Graph-Space Optimal Transport from Métivier

et al. (2018, 2019)
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Cycle-skipping: misfit functions SE I S COPE

Graph-Space OT applied to 3D OBC data from the

Valhall field (Pladys et al, sub), from 1D initial model

• despite all those efforts, as well as model

extention approaches (WRI, source-extention,

WEMVA-based approaches), is cycle-skipping

behind us?

• maybe for P-wave (with ’identification)?

• what about very complex targets?

surface-waves? multiples?
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Multi-parameter FWI: exploiting amplitudes SE I S COPE

Vp inclusion, ρ fixed ρ inclusion, Vp fixed
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radiation patterns from Zhou et al. (2015)

3 parameters Hessian matrix from Métivier et al.

(2015)
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Multi-parameter FWI: exploiting amplitudes SE I S COPE

Kamath et al. (2021)

• Waves are sensitive beyond Vp. Some attempts

to reconstruct more, but is it a global trend?

• Multi-componant data (OBS, OBC) should

allow to go beyond VP only. Do we have

numerical optimization do perform

multi-parameter inversion (Hessian) ?

• high-frequency should also more info on

multiple parameters down to the reservoir

scale.
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Exploiting reflections for low-K SE I S COPE

RWI from Xu et al. (2012),

inspired by the MBTT (Chavent et al., 1994)

Joint FWI from Zhou et al. (2015) that combines

RWI and diving-waves FWI
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Exploiting reflections for low-K SE I S COPE
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HPC Challenges SE I S COPE

• limitation of 3D modeling at early times

→ most early applications in 2D

• intrisic cost of the 3D forward problem

≈ C × 1/λ4 = C × f 4/V 4

• wave physics ↗ C (and ↘ V in elastic)

• shot encoding/shot selection

• imaging condition challenges for the correlation

of both fields(Symes, 2007; Anderson et al.,

2012; Yang et al., 2016; Komatitsch et al.,

2016; Robertsson et al., 2021, among others)
Yang et al. (2016)
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Current trend: push FWI to (very) high frequency SE I S COPE

Warner et al. (2021)

• FWI can be used as a single consistant tool to

replace VMB + migration

• beyond the workflow efficiency and the

possible qualitative interpretation, what is the

meaning of the quantitative velocity?

• Would that make sense to push elastic FWI to

high frequency for detailled reservoir

characterization? downscaling?

• is homogeneization theory required when

reconstructing velocity model on several

octaves?
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What about uncertainties? SE I S COPE

• Curse of dimensionality in 3D... but RJMCMC

seems appealing in low frequency (Sen and

Biswas, 2017)

• Probing the Hessian... with it cost

Fang et al. (2014, 2018)
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What about uncertainties? SE I S COPE

Thurin et al. (2019)
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Other challenging perspectives for FWI SE I S COPE

• 4D FWI for monitoring: field

monitoring, CCS, H2, ...

• near-surface

characterization/surface waves

(wind turbine foundation?)

• sparse/cheap acquisitions? from

ambiant noise?

Zhou & Lumley (2021)
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• 4D FWI for monitoring: field

monitoring, CCS, H2, ...

• near-surface

characterization/surface waves

(wind turbine foundation?)

• sparse/cheap acquisitions? from

ambiant noise?

Irnaka et al. (sub)
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• near-surface

characterization/surface waves

(wind turbine foundation?)

• sparse/cheap acquisitions? from
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