Evolution of Vitrinite Reflectance Models Understanding the fundamentals

ALAN K. BURNHAM

ERE Affiliate

FORCE Seminar Norwegian Petroleum Directorate December 2, 2021

SCHOOL OF EARTH, ENERGY & ENVIRONMENTAL SCIENCES Engineering

Stanford University

aburnham@stanford.edu

BPSM is evolving

Now stands for <u>Basin</u> <u>Processes</u> and <u>Subsurface</u> <u>Modeling</u>

Expanded scope includes carbon sequestration, gas hydrates, carbonate models, pore-pressure prediction, integrated workflows, and other basin-scale subsurface processes

Contacts: Allegra Hosford Scheirer <allegras@stanford.edu> Tappan Mukerji <mukerji@stanford.edu>

My Mother's side comes from Brandstad, Norway

All organic matter becomes more aromatic and anisotropic with burial and maturation

Behar and Vandenbrouke, Org. Geochem., 1987

STRUCTURE III-a: H/C = 1,06 O/C = 0,281 MW = 26176

Reflectance is related to refractive and absorptive indices of the material (Fresnel-Beer eq.)

<u>Absorptive indices</u> are dominated by the size and orientation of aromatic rings (Schuyer et al., Trans. Faraday Soc. 1953)

STRUCTURE III-c: H/C = 0,67 O/C = 0,059 MW = 13 226

Models of vitrinite reflectance range in sophistication

Simple correlations with temperature

Example: Barker's geothermometer Global kinetics that correlate with reflectance; may have pressure dependence

Examples: TTI Easy%RoX Calculate molecular composition and relate to reflectance

Example: Vitrimat

My Takeaway Advice

- 1. Don't use Easy%R_o anymore—it has some serious weaknesses
 - a) My preference is Easy%R_oV for basin modeling; Easy%R_oB for bitumen when no vitrinite is available
- 2. The Easy%R_o family of models were developed to reduce computation time, which is not as important with today's computers; using 2nd-order reactions is just as effective
- 3. The Vitrimat approach is more rigorous and adaptable to various kinds of organic matter
- 4. Most vitrinite reflectance suppression is due to misidentification of vitrinite, but true suppression can exist in sapropelic shales

Relating reflectance to fundamental optical properties came in the 1950s

1D energy in atomic units: 0.01125

Localized electron contributions to the refractive index can be estimated by group additivity rules

Refractive index is determined by the number densities of C, H, N, S, and O

- More precisely, the number densities • of atoms with different hybridizations
- Van Krevelen (2009) cites group ۲ additivity rules in his book, Properties of Polymers: Their correlation with chemical structure; their numerical estimation and prediction from additive group contributions.

To a first approximation:

C=2.8; H=1.0; N=2.8; S=8.0; O=1.8

- Eliminating H and O increases the • polarizability density
- PVAc=1.47, PE=1.49, PS=1.59

Group contributions to the molar refraction version of the Lorentz-Lorenz eq.

$$\mathbf{R}_{\mathrm{LL}} = \frac{n^2 - 1}{n^2 + 2} \frac{\mathbf{M}}{\rho} \quad n = \left(\frac{1 + 2\frac{\mathbf{R}_{\mathrm{I}}}{\mathbf{V}}}{1 - \frac{\mathbf{R}_{\mathrm{L}}}{\mathbf{V}}}\right)$$

($1+2\frac{\mathbf{R}_{\mathrm{LL}}}{\mathbf{V}}\Big)^{1/2}$
	$1 - \frac{\mathbf{R}_{\text{LL}}}{\mathbf{V}}$

Group con	tributions in	n 10 ^{−6}	m³/mo	l to the	molar	refraction	$\lambda =$	589 nr	n)
-----------	---------------	--------------------	-------	----------	-------	------------	-------------	--------	----

•			•	
CH3	General	5.644	>C = O	Methyl ketone
	Attached to benzene ring	5.47		Higher ketones
CH ₂ -	General	4.649		Attached to benzene ring
	Attached to benzene ring	4.50	-CH = O	General
CH-	General	3.616	-COOH	General
	Attached to benzene ring	3.52	-COO-	Methyl esters
C<	General	2.580		Ethyl esters
	Attached to benzene ring	2.29		Higher esters
	Cyclohexyl (n=1.43	3 26.686		Attached to benzene ring Acetates
	Phenyl n=1.5	0 25.51) -0COO-	Methyl carbonates
				Higher carbonates
			$-NH_2$	General
\sim	o-Phenylene	24.72		Attached to benzene ring
			>NH	General
				Attached to benzene ring
	<i>m</i> -Phenylene	25.00	>N-	General
				Attached to benzene ring
		25.02	-CONH-	General
	<i>p</i> -Phenylene	25.03		Attached to benzene ring
	A vorago valuo	0.50	–C≡N	
ar	Average value	1.59	$-NO_2$	
)_	Methyl ethers	1.587	-SH	Primary
	Attacked to keepere view	1.641		Secondary
	Attached to benzene ring	1.77		Tertiary
ЪН	Primary alcohol	2 551	-S-	Methyl sulphide
/11	Secondary alcohol	2.551		Higher sulphides
	Tertiary alcohol	2.450	-SS-	~ .
	Phenol	2.400	Stan	ford University
	1 10101	<u> </u>	JLAII	

16.17 q

4.787 4.533

5.09

5.83

7.212 6.237

6.375

6.206

6.71 6.306

7.75

7.74 4.355

4.89 3.585

4.53 2.803 4.05 7.23

8.5 5.528

6.662 8.845

8.79

9.27

7.92 8.07

Consider the various contributions to hydrocarbons, diamond, and graphite

Diamond (tetrahedral C) n = 2.42 (greater than mature kerogen~1.8) $d = 3.52 \text{ g/cm}^3$ $R_{0} \sim 6\%$ Anthracite (polyaromatic rings) $n_{max} \approx 2.01, n_{min} \approx 1.93$ $d = 1.5 \text{ g/cm}^3$ $R_{o} \approx 4\%$ and H/C ≈ 0.3 Graphite indicates that the *n_{max}* = 2.15, *n_{min}* = **1.81** primary contribution $k_{max} = 0.66, \ k_{min} = 0.0$ to reflectance is the $d = 2.26 \text{ g/cm}^3$ absorptive term parallel to the $R_{o \max} = 15.6\%$ and $R_{o \min} \approx 2\%$

aromatic ring
 Stanford University ¹⁰

Anisotropy starts above 1.0%Ro and is not clearly significant until 1.5%Ro (H/C ~ 0.6), after the oil is generated

Sharkey & McCartney, 1981 quoted by Mukhopadhyay, 1992

LLNL work around 1980 shows that ring condensation occurs mainly after oil components are generated

Ring condensation provides long π -bond resonance lengths for broader and stronger optical absorption

Elemental balance equations and original correlations derived for the original Vitrimat (GCA 1989)

4

$$CH_{x}O_{y} \rightarrow C_{1-b-c-d}H_{x-2a-nc-4d}O_{y-a-2b} + a H_{2}O + b CO_{2} + c CH_{n} + d CH_{a}$$

$$\delta = [x - 2y\alpha - n\gamma - \chi(1 - y\beta/2 - \gamma)]/(4 - \chi)$$

$$H/C = (x - ny\alpha f_{\alpha} - n\gamma f_{\gamma} - 4\delta f_{\delta})/(1 - y\beta f_{\beta}/2 - \gamma f_{\gamma} - \delta f_{\delta})$$

$$O/C = y(1 - \alpha f_{\alpha} - \beta f_{\beta})/(1 - y\beta f_{\beta}/2 - \gamma f_{\gamma} - \delta f_{\delta})$$

$$\alpha = \text{fraction of initial } O \text{ eliminated as } H_{2}O_{\beta}$$

$$\beta = \text{fraction of initial } C \text{ eliminated as } CO_{2}$$

$$\gamma = \text{fraction of initial } C \text{ eliminated as } CH_{n}$$

$$\delta = \text{fraction of species } i \text{generated}$$

$$wt\% C = 1200/[12 + (H/C) + 16(O/C)] - 1.5$$

$$\% Ro = 12\exp(-3.3(H/C)] - (O/C)$$

$$\% Ro = \exp(-1.25 + 4.5\Delta + 300\Delta^{5} + 1.6 \times 10^{8}\Delta^{15})$$

FIG. 1. Comparison of vitrinite reflectance data (MCCARTNEY and TEICHMÜLLER, 1972) to that calculated with Eqns. (1) and (2). The symbols retain their original meaning: \Box , \bullet European vitrinites; O U.S. coals.

Multiple workers have noted a dogleg shape not captured by Easy%Ro

Motivation for updating Vitrimat (and Easy%Ro)

Several authors, most recently Nielsen et al. (2017), have indicated that Easy%R_o does not increase fast enough at high

Kinetic studies in the 1990s and later indicate that the most probable frequency factor for kerogen conversion is about 2×10¹⁴ s⁻¹ instead of 1×10¹³ s⁻¹ assumed for Vitrimat 1989

Basin%Ro does not work well at laboratory time scales for humic coals—worse than Easy%Ro

Easy%R_oDL was a step on the road to improvement but still did not match laboratory data very well

Better agreement at high reflectance, but reflectance still too low compared to coals during early maturation

After trying lots of options, I found better simultaneous agreement with lab data using $A=1\times10^{15}$ s⁻¹

Comparison of various reflectance models for geological heating at 2 °C/Myr.

Vitrimat 2018: Burnham, *Org. Geochem.* 131, 50-59 (2019) Developed with support from Total S. A.

Vitrimat 2018 was also calibrated against more compositional data than the original Vitrimat

Additional comparisons have been made since

- More optimization of the Vitrimat CO₂ and H₂O kinetics at low maturity may be warranted
- Faster water release kinetics during diagenesis are needed to match diagenesis
- These would have a minor effect on calculated reflectance during and after the oil window

An open question is the whether the relationship between oil generation and vitrinite reflectance is exactly the same in nature and in the laboratory

The Vitrimat 2018 algorithms can be used with any sedimentary organic matter

Type II kerogen is very similar to reported values for bitumen **Stanford University**

Vitrinite reflectance suppression is real

- Demonstrated using HP of mixtures by Peters et al. (*Org. Geochem.*, 2018)
- Suppression tends to disappear by VR = $1.3 \% R_{o}$

Temperature, °C

Summary

- Vitrinite reflectance increases due to a combination of densification and aromatic condensation reactions
 - The anisotropy of graphite helps put them in perspective
- Evidence is strong that Easy%R_o underestimates VR at high maturities
- Easy%R_oDL and Easy%R_oV have a sharper dogleg near the end of oil generation
 - Corresponds to the onset of aromatic condensation reactions
- Easy%R_oV is derived from Vitrimat 2018, which is based on a higher frequency factor
- Vitrimat 2018 also inspired Easy%R_oB for bitumen reflectance
- Vitrinite suppression is real, so vitrinite in oil-prone shales is misleading