

NPD FORCE Geophysical Methods Group

Fundamentals of Borehole Seismic Technology

By: Neil Kelsall, Rogelio Rufino and Rafael Guerra

Schlumberger

Stavanger, 04-Oct-2022

Agenda

- Borehole Seismic introduction (10 min) R. Guerra
- Data acquisition technology on wireline & fiber optics (20 min) R. Guerra
- LWD seismic while drilling technology (30 min) N. Kelsall Lunch Break (60 min)
- Survey design & modelling (10 min) R. Guerra
- Data processing technology & case studies (35 min) R. Rufino

Final discussion & adjourn (15 min)

- Passive, impulsive or vibrational sources, temporary or permanent
- Geophones, hydrophones or fiber optics, temporary or permanent
- Recorded during drilling, OH/CH logging or during production

Resolution

Logging	(~10 ³	Hz)	~ (0.3 m
Xwell	(~10 ²	Hz)	~	3 m
VSP	(~ 50	Hz)	~	10 m
Seismic	(~ 25	Hz)	~	20 m

Surface Seismic Data

(Margues et al., 2011)

The surface seismic does not resolve the 15 m thick sand body drilled by the pilot-hole

VSI image below well deviations

(Margues et al., 2011)

The high-resolution VSP image does resolve the 15 m thick sand body

Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

Surface seismic section in Time

- What can seismic tell us during each E&P stage?
- What is the role of the borehole seismic?

FORCE

LWD Seismic while drilling & depth prediction ahead of the bit

LWD Seismic tool & Six airgun array

Ray-tracing modelling: rig source vs VIVSP

Final lookahead update during drilling

(Kelsall et al., 2020)

Tie Geological Markers

The synthetic does not match. Problem with logs or with seismic?

A successful synthetic match clearly establishes the relationship between the formations drilled and the surface seismic data. The time-to-depth relation has to be established, and the seismic response of the formations has to be determined.

Tie Geological Markers

What does the VSP corridor stack show?

The surface seismic may have multiple contamination problems and in this case, the borehole measurements are correct

Sonic [kHz] vs Seismic [Hz]

Borehole effect on sonic

- Dipole flexural dispersion
- Mud filtrate invasion
- Formation alteration
- Near-wellbore stresses
- Hole shape, caves, etc.

Rock frequency dispersion

- Effect of layering (Backus averaging)
- Partially saturated rocks
- Attenuation anelasticity

Different resolution

 Different depths of investigation and different resolutions (~ 2 ft vs ~10 m)

Different ray paths

- Sonic usually travels along the borehole
- VSP/Seismic depends on S-R geometry

Frequency differences: sonic vs seismic

1) Velocity dispersion

$$c(f_2) = c(f_1) \left[1 + \frac{1}{\pi Q} \ln \left(\frac{f_2}{f_1} \right) \right] \quad Kolsky-Futterman$$
(KF) model*

f1 = 40Hz;f2 = 8000 HzQ=30: $C_2 = C_1 * 1.056 (+6\%)$ Q=50: $C_2 = C_1 * 1.034 (+3\%)$ Q=100: $C_2 = C_1 * 1.017 (+2\%)$ Q=150: $C_2 = C_1 * 1.011 (+1\%)$

Sonic calibrated with VSP

2) Partial gas saturation

(Murphy et al., 1993)

SFORCE

Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

Advanced Sonic & Walkaway VSP for TTI anisotropy

Downhole acoustic monitoring

(Tøndel et al., 2013)

Borehole Seismic Survey Types

(Bettinelli, 2020)

Borehole Seismic Conveyance

Conventional wireline

Thru-drillpipe seismic

Drill-pipe conveyed (TLC)

Well tractor

LWD Seismic

Thru-tubing

Perment 4C sensors, Analog, Part of tubing completion

DAS acquisition Fibers strapped to tubing or cemented behind casing

Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

Drillbit seismic

Borehole Seismic Advantages – Summary

- Measurement in time & depth \rightarrow tie well depths to seismic times
- **Quite downhole environment** \rightarrow very high SNR datasets
- Shorter travel paths \rightarrow less attenuation / wider bandwidth (resolution)
- True amplitude, phase and multiples free \rightarrow advanced seismic calibration
- Identification of key seismic multiples generators → multiples studies
- Insitu property measurements → Vp/Vs, Q-factor, anisotropy
- Unique geometry \rightarrow illuminate steep surfaces/faults, overhangs, etc.
- 3C/4C measurements → rich wavefields (P & S); S-wave processing is standard
- **S-wave birefringence** \rightarrow *fractures direction and density*
- Lookahead/Lookaround \rightarrow sole log capable of looking ahead or around 100's of meters
- Real-time LWD VSPs → drilling assistance
- Fast fibre optics -> efficiently record large datasets (1C DAS and/or 3C optical point sensors)

Borehole Seismic Books

- Two references on borehole seismic principles and applications but not covering DAS yet - Distributed Acoustic Sensing
- Schlumberger book available as PDF (free). Printed book can be ordered

Schlumberger

Fundamentals of Borehole Seismic Technology

https://www.slb.com/resource-library/book/fundamentals-of-borehole-seismic-technology-overview

Acknowledgments

- Thanks to Thor Allan Garden (Equinor) for suggesting that we present this course at NPD FORCE.
- Thanks to the NPD FORCE Geophysical Methods Group and Schlumberger for the opportunity to present this course.

