





#### **NPD FORCE Geophysical Methods Group**

### Survey design & modelling



By: Rafael Guerra (Domain Center Geophysicist)

Schlumberger

Stavanger, 04-Oct-2022

### **General BHS Survey Design & Modelling Guidelines**

#### 1. Survey Objectives:

- Time-depth velocity control  $\rightarrow$  is boat required for deviated wells?
- Wideband, true-amplitude, zero-phase → optimize source parameters?
- Look-ahead / drilling assistance  $\rightarrow$  depth accuracy or thickness resolution required ?
- High-resolution imaging (P- or converted S-waves) → resolution, lateral illumination and fold?
- AVO/AVAZ calibration  $\rightarrow$  offset/angle ranges required, antenna position
- TTI anisotropy  $\rightarrow$  global travel times or local slowness-polarization?
- Full Waveform inversion  $\rightarrow$  which parameters we want to invert?
- Fractures characterization  $\rightarrow$  HTI, ORT or lower symmetry media
- Seismic multiples study  $\rightarrow$  1D reflectivity modelling
- Time-Lapse response → rock physics / geomechanics
- Microseismic monitoring → minimum magnitude detectable, MT invertibility, ...

#### 2. Geological model/velocity model complexity

- Flat and boring or high dips? Nearby faults, gas pockets or salt domes ?
- Are there strong lateral or vertical velocity variations?
- Is there a preferential dip direction to shoot 2D survey?



### General BHS Modelling Guidelines (cont.)

- 3. Input data available: *quantity and quality*
- 4. Modelling technique: conditioned by all three previous points
- 5. Well conditions & well geometry: type of tool or fiber optics and conveyance
- 6. Surface conditions: where sources can be deployed
- 7. Equipment available: if not in place, feasibility to import equipment in time
- 8. **Project cost:** any technical solutions must be realistic & cost-effective



#### Pre-survey Geophysical Modelling: Feasibility & Geometry Optimization

- Illumination, fold, incidence angles at targets <u>& at fiber</u>
- Anisotropic synthetics and moment tensor sources
- Low-frequency strain modeling vs DAS data







Omega 3D visco-elastic anisotropic Finite Differences used in complex surveys

DAS box frequency response can be applied to synthetics



*SFORCE* 

### Standard Zero-offset VSP design

- 3C / 4C sensors spaced @15 m (5 30 m) For DAS fiber optics, @5m (1 - 10 m)
- Irregular spacing is OK
- To avoid aliasing spacing: DZ < Vmin / 2\* Fmax</li>
  E.g.: P-waves, Vmin = 2250 m/s and Fmax = 75 Hz → DZ < 15 m</li>
  Higher frequencies, fine layering, complex geology, S-wave or tube waves require shorter spacing (~7.5 m)
- Aliasing avoided with median filters when the downgoing & upgoing moveouts are known
- Short spacing is recommended for high resolution applications, higher SNR results and also in complex geology with rich content of different wavefields
- VSPs can be recorded in OH or CH, fair cementation required over near vertical sections. No cement required if deviation > ~30°
- Standard VSP program: record at 15 m from TD up to as shallow as possible (no ringing on Z-axes) and then at ~120 m up to surface (or seabed) if data quality allows









#### Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

• 3C

FORCE

# Rig source or boat VIVSP?

- Well step-out > ~500 m?
- Flat and boring geology?
- Propagation angles high?
- Velocity variations strong?
- Anisotropy high?

#### Vertical OWT Difference VSP - VIVSP





### Test accuracy of isotropic straight ray path assumption

#### Standard Method: Cosine Correction



The correction assumes straight seismic ray paths

 $\rightarrow$  The field computations ALWAYS use this method

#### Examples of T-Z listing in field reports:

#### **Stack Summary Listing (1/6)** Survey WAVEFIELD\_RECEIVER\_Z\_for\_Report.ldf

|   | Stack<br>Number | Measured<br>Depth [ft] | True Vertical<br>Depth [ft] | Measured<br>Time [s] | One-way<br>Vertical Time<br>[s] | Two-way<br>Vertical Time<br>[s] | Interval<br>Velocity [ft/s] | Average<br>Velocity [ft/s] | RMS<br>Velocity<br>[ft/s] |
|---|-----------------|------------------------|-----------------------------|----------------------|---------------------------------|---------------------------------|-----------------------------|----------------------------|---------------------------|
| Ī |                 | 0                      | 0                           | 0                    | 0                               | 0                               |                             |                            |                           |
| ĺ |                 |                        |                             |                      |                                 |                                 | 5388.3                      |                            |                           |
|   | 43              | 391.0                  | 345.0                       | 0.0772               | 0.0640                          | 0.1280                          |                             | 5388.3                     | 5388.3                    |
|   |                 |                        |                             |                      |                                 |                                 | 6479.9                      |                            |                           |
|   | 43              | 441.0                  | 395.0                       | 0.0830               | 0.0717                          | 0.1435                          |                             | 5505.7                     | 5516.1                    |
| ĺ |                 |                        |                             |                      |                                 |                                 | 7242.3                      |                            |                           |
|   | 43              | 491.0                  | 445.0                       | 0.0883               | 0.0786                          | 0.1573                          |                             | 5658.2                     | 5688.7                    |
|   |                 |                        |                             |                      |                                 |                                 | 7403.8                      |                            |                           |
| ĺ | 43              | 541.0                  | 495.0                       | 0.0938               | 0.0854                          | 0.1708                          |                             | 5796.2                     | 5842.7                    |
|   |                 |                        |                             |                      |                                 |                                 | 6608.5                      |                            |                           |
|   | 42              | 791.0                  | 745.0                       | 0.1282               | 0.1232                          | 0.2465                          |                             | 6045.6                     | 6088.1                    |
|   |                 |                        |                             |                      |                                 |                                 | 7747.9                      |                            |                           |
|   | 42              | 841.0                  | 795.0                       | 0.1341               | 0.1297                          | 0.2594                          |                             | 6130.3                     | 6181.2                    |
|   |                 |                        |                             |                      |                                 |                                 | 9031.1                      |                            |                           |
|   | 42              | 891.0                  | 845.0                       | 0.1392               | 0.1352                          | 0.2704                          |                             | 6249.1                     | 6323.2                    |
| 1 |                 | 1                      | 1                           |                      | 1                               | 1                               |                             | 1                          |                           |

#### Stack Summary Listing

| Stack<br>number | Well depth[m] | TVD from<br>SRD[m] | TT[ms] | TT(TVD<br>Corrected)[ms] | TWT(TVD<br>Corrected)[ms] | Interval<br>Velocity[m/s] | Average<br>Velocity[m/s] | RMS<br>Velocity[m/s] |
|-----------------|---------------|--------------------|--------|--------------------------|---------------------------|---------------------------|--------------------------|----------------------|
| 62              | 49.99         | 39.06              | 91.07  | 31.29                    | 62.59                     | 983.77                    | 1248.08                  | 1248.08              |
| 61              | 51.54         | 40.61              | 92.47  | 32.87                    | 65.74                     | 1654.13                   | 1235.39                  | 1236.68              |
| 60              | 125.04        | 114.10             | 103.98 | 77.30                    | 154.60                    | 1806.41                   | 1476.07                  | 1490.97              |
| 59              | 200.01        | 188.92             | 133.79 | 118.72                   | 237.44                    | 1895.72                   | 1591.32                  | 1608.06              |
| 58              | 274.96        | 263.84             | 168.02 | 158.24                   | 316.48                    | 1818.54                   | 1667.34                  | 1684.51              |
| 57              | 350.01        | 338.83             | 206.17 | 199.48                   | 398.95                    | 2300.44                   | 1698.59                  | 1713.08              |





#### **ATTENTION**

VSPs in deviated wells <u>or</u> vertical wells in strongly dipping layers (>10°)

#### → Strong velocity contrasts refract the P-waves and affect the std method accuracy

## Improvements on standard method:

- 3C polarization method
- Ray-based tomography - FWI





### Standard Walkaway VSP design



- Direct P-wave angles at receivers > ~90° (for VTI estimation)
- Reflection angles at target are < ~45° (imaging), and < ~60° (AVO)
- For imaging, the receiver array is *typically* ~1 km above the target
- For local TTI estimation, place ~12 receivers across shales of interest
- For AVO, place receivers immediately above the interfaces of interest
- In complex geology reflected points can deviate from the 2D plane and a 3D solution is required







Walkaway TTI 3D Finite Differences + RTM Imaging (Lal Khaitan et al., 2022)

→ Headwaves & multiple arrivals are properly modelled



#### **DAS modeling –** *cosine square directivity*



**NOTE:** recording 3DVSPs in 4 well simultaneously requires only 2 DAS boxes of latest generation





