



#### **NPD FORCE Geophysical Methods Group**

#### Data processing technology & case studies



#### By: Rogelio Rufino (A&I Lead Borehole Geophysicist)

Schlumberger

Stavanger, 04-Oct-2022

#### Borehole Seismic Survey Types





## Basic VSP Processing and Concepts



## **Transit Time Calculation**

#### One-Way Time vs. Two Way Time



#### FORCE

Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

## Transit Time Calculation, T-Z Function

- Surface hydrophone time picks (Inflection Point or Trough)
- Downhole data stack and first arrival time picks (Inflection Point or Trough)
- Well deviation survey
- Source Offset and Azimuth
- Gun and sensor depth
- Replacement velocity



## **Transit Time Picks**



Trace Number

#### Average Sea Velocity Estimation



Seafloor multiple (0.3892s) after first break

Velocity = 288m / 0.3892s = 740.5 m/s x 2 (Two Way Path) = **1481 m/s** 



## **Transit Time Calculation and Velocities**



|                 | Client &           | Well Inforr                     | nation            |                       |                    | 1                 |                      |                     |                 |
|-----------------|--------------------|---------------------------------|-------------------|-----------------------|--------------------|-------------------|----------------------|---------------------|-----------------|
|                 |                    | Company                         |                   | 1                     |                    |                   |                      |                     |                 |
|                 |                    | Well                            |                   | :                     |                    |                   |                      |                     |                 |
|                 |                    | Logging I                       | Date              | :                     |                    |                   |                      |                     |                 |
|                 | Survey I           | nformation                      | ı                 |                       |                    |                   |                      |                     |                 |
|                 |                    | <b>KB</b> Eleva                 | tion              | :                     |                    |                   |                      |                     |                 |
|                 |                    | DF Elevat                       | tion              | :                     |                    |                   |                      |                     |                 |
|                 |                    | SRD                             |                   | :                     |                    |                   |                      |                     |                 |
|                 |                    | Sea Bed                         |                   | :                     |                    |                   |                      |                     |                 |
|                 |                    | Source D                        | epth              | :                     |                    |                   |                      |                     |                 |
|                 |                    | Source Offset<br>Source Azimuth |                   | :                     |                    |                   |                      |                     |                 |
|                 |                    |                                 |                   |                       |                    |                   |                      |                     |                 |
|                 |                    | Run                             |                   | :                     |                    |                   |                      |                     |                 |
|                 |                    | Replacen                        | nent Velo         | city :                |                    |                   |                      |                     |                 |
|                 |                    | •                               | R                 | eference :            | MSL                |                   |                      |                     |                 |
| Level<br>Number | Vertical<br>Depth  | Measured<br>Depth               | Depth<br>Interval | Observed<br>Time      | Vertical<br>OWT    | Time<br>Differenc | Interval<br>Velocity | Average<br>Velocity | RMS<br>Velocity |
|                 | From<br>SRD<br>(m) | From<br>DF<br>(m)               | (m)               | From<br>Source<br>(s) | From<br>SRD<br>(s) | е                 | (m/s)                | (m/s)               | (m/s)           |
|                 | (,                 | ()                              | (11)              | (3)                   | 137                | (s)               | (11/3/               | (11(3)              | (11/3/          |
| 1               | 0.0                |                                 |                   |                       | 0.0000             |                   |                      |                     | 0               |
|                 |                    |                                 |                   |                       |                    |                   | 1441                 |                     | chlu            |
| 2               | 260.8              | 290.8                           |                   | 0.1847                | 0.1810             |                   |                      | 1441                | 1441 🛃          |
|                 |                    |                                 | 15.2              |                       |                    | 0.0079            | 1924                 |                     | erge            |
| 3               | 276.0              | 306.0                           |                   | 0.1921                | 0.1889             |                   |                      | 1461                | 1464 💍          |
|                 |                    |                                 | 15.2              |                       |                    | 0.0080            | 1903                 |                     | onfi            |
| 4               | 291.3              | 321.3                           |                   | 0.1997                | 0.1969             |                   |                      | 1479                | 1485 🔄          |
|                 |                    |                                 | 15.2              |                       |                    | 0.0080            | 1909                 |                     | 23              |
| 5               | 306.5              | 336.5                           |                   | 0.2073                | 0.2049             |                   |                      | 1496                | 1504            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0078            | 1944                 |                     |                 |
| 6               | 321.7              | 351.7                           |                   | 0.2148                | 0.2127             |                   |                      | 15 12               | 1522            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0072            | 2 130                |                     |                 |
| 7               | 336.9              | 367.0                           |                   | 0.2215                | 0.2 199            |                   |                      | 1532                | 1546            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0086            | 1765                 |                     |                 |
| 8               | 352.2              | 382.2                           |                   | 0.2299                | 0.2285             |                   |                      | 1541                | 1554            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0076            | 1995                 |                     |                 |
| 9               | 367.4              | 397.4                           |                   | 0.2372                | 0.2361             |                   |                      | 1556                | 1571            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0083            | 1835                 |                     |                 |
| 10              | 382.7              | 412.7                           |                   | 0.2453                | 0.2444             |                   |                      | 1565                | 1580            |
|                 |                    |                                 | 15.2              |                       |                    | 0.0076            | 1996                 |                     |                 |
| 11              | 397.9              | 427.9                           |                   | 0.2526                | 0.2521             |                   |                      | 1578                | 1594            |

#### *♦ FORCE*

#### Median Stack Results





## Normalization







#### FORCE

## Geometrical Spreading (GS)



The Gain exponent (x) is estimated using the  $V_{RMS}$  calculated from the VSP vertical time-depth curves assuming:

 $G = V_{RMS}^2 T \Longrightarrow InG = In\alpha + xInT.$ 

The gain exponent x is the slope of a best-fit linear estimate on a logarithmic T versus G plot. An average gain-exponent of **1.51** was estimated for the ZOVSP survey using this method.







#### FORCE



## VSP Processing – Wavefield Separation





## Estimation of Downgoing Energy





## Enhance Upgoing Energy (1st Residual)



FORCE

## Enhance Upgoing Energy





## Enhance Upgoing Energy (2<sup>nd</sup> residual)



Residual wavefield contains : Random noise, events of out plane, shear waves, tube waves, etc.) – It is important to QC the residual to avoid taking relevant reflected signal when moveouts are complex.



## Enhance Upgoing Energy





## **VSP Processing - Deconvolution**





## Deconvolution

The function of deconvolution is to precisely improve the resolution capabilities of the upgoing wavetrain: It removes the near surface multiples & the bubble effects It optimizes the resolution characteristics of the source signature

Deconvolution filters are computed on the downgoing wavetrain and applied to both the downgoing and upgoing waves



## Wavefield Spectral Analysis



The FK spectra for the downgoing P and upgoing P wavefields both shows that the separation has been done properly. The maximum frequency bandwidth used for waveshaping deconvolution will be 5-120Hz but the corridor stack will also be delivered with lower frequency bandwidths.

#### FORCE

## Wave Shaping Deconvolution on downgoing wavefield



Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

# Wave Shaping Deconvolution on upgoing wavefield





## VSP Processing – Corridor Stack



#### FORCE

## **Corridor Stack**





#### FORCE



# **Two-Way Time** Depth (1) enhance signal close to the well (2) eliminate remaining upgoing multiples in the final VSP data



## **VSP** Applications





Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

#### I know it was too long....

#### **Questions, Comments**



Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)







#### VSP Events out of Plane

Stavanger, 04-Oct-2022

#### **Vertical Incidence VSP**

#### Distance (m)



#### Primary objectives:

- T-Z Function
- Well Tie

#### But ...

- Near to the fault?
- Hit target?

#### Deepest target





Max well deviation (35deg)

#### **VIVSP Raw Data**





#### **VIVSP Rotated Data**





#### **VIVSP Migrated Image and Surface Seismic**






### **VIVSP, NRY Component Analyses**



Diffraction produced by fault?

- $\rightarrow$  Process the event
- $\rightarrow$  Calibrate model
- $\rightarrow$  Depth/Time migration







# Faults added to velocity model to match VIVSP events moveout

### **Produced Image After Event Isolation and Deconvolution**







## **VIVSP Images**





- High Resolution VIVSP
  Image to identify targets
- Fault Confirmation











# Enhancing VSP resolution

Stavanger, 04-Oct-2022

## Motivation for ZVSP Semblance Deconvolution (Haldorsen et al., 1994)

- ZVSPs are supposed to have higher resolution compared to surface seismic, however broadband and shallow high-resolution seismic surveys often challenge that
- Standard VSP processing often uses fixed bandwidth deterministic VSP deconvolution, adjusting limits at the deep target zone, thus throwing away data in shallower intervals
- Semblance Weighted Deconvolution allows outputting maximum bandwidth zero-phase time variant corridor stacks, like surface seismic data
- The maximum bandwidth is estimated "automatically" based on semblance
- Semblance Weighted Deconvolution allows ZVSP to match or surpass very high-resolution surface seismic surveys everywhere (except possibly over very low frequencies due to limitations of the VSP seismic source



# Semblance Weighted Deconvolution



Haldorsen, J., Miller, D. and Walsh, J. [1994] Multichannel Wiener deconvolution of vertical seismic profiles. Geophysics 59

$$\hat{f}(\omega) = \frac{1}{N} \sum_{n=1}^{N} s_n(\omega) e^{-i\omega t_n}.$$

$$F(\omega) = \frac{\hat{f}^*(\omega)}{E_T(\omega)}, \qquad E_T(\omega) = \frac{1}{N} \sum_{n=1}^{N} |s_n(\omega)|^2.$$

$$F(\omega) = \frac{\hat{f}^*(\omega)}{|\hat{f}(\omega)|^2} S(\omega), \qquad S(\omega) = \frac{|\hat{f}(\omega)|^2}{E_T(\omega)}$$
(5)

- ightarrow In Semblance Weighted decon there is no white noise
- → The average downgoing signal is weighted at each frequency by the semblance across the receiver array
- → These Semblance Weighted decon filter attain two conflicting objectives of adaptively spiking the direct arrivals and of minimizing the incoherent noise

# Possible trap with Z-stacks spectra





# Well Tie – Standard Corridor Stack (5-95Hz) and Surface Seismic





# Well Tie – Semblance Decon Corridor Stack and Surface Seismic



Surface Seismic XLINE +2ms shift to seismic to tie corridor stack





# Well Tie – Semblance Decon Corridor Stack and High-Resolution Surface Seismic

Surface Seismic XLINE +2ms shift to seismic to tie corridor stack





# Observations

New results using Semblance Weighted Deconvolution (Semblance Decon) show the following:

- 1. Previous observed well tie time-shift differences are maintained
- 2. WSD corridor stack is 0-phase with > 4-220 Hz in shallower section to ~ 4-150 Hz in the deeper TD section
- 3. Semblance Decon deconvolution effectively fills-in the 7 m depth source ghost notch around 107 Hz





*SFORCE* 





# Look Ahead

Stavanger, 04-Oct-2022

## Look Ahead Prediction Using VSP Downgoing TD Extrapolation

| MD          | OWT-SRD  | TWT-SRD  |
|-------------|----------|----------|
| 1692.876587 | 0.785014 | 1.570028 |
| 1708.117554 | 0.792523 | 1.585046 |
| 1723.358521 | 0.79945  | 1.5989   |
| 1738.599609 | 0.806656 | 1.613312 |
| 1753.618042 | 0.814513 | 1.629026 |
| 1768.859009 | 0.821243 | 1.642486 |
| 1784.099976 | 0.829002 | 1.658004 |
| 1799.341064 | 0.8374   | 1.6748   |
| 1814.788818 | 0.845512 | 1.691024 |
| 1830.029907 | 0.853044 | 1.706088 |
| 1845.270752 | 0.860545 | 1.72109  |
| 1860.511963 | 0.868298 | 1.736596 |
| 1875.746338 | 0.875217 | 1.750434 |
| 1890.987183 | 0.882669 | 1.765338 |
| 1906.228271 | 0.889697 | 1.779394 |
| 1921.46936  | 0.897031 | 1.794062 |
| 1936.767334 | 0.903776 | 1.807552 |
| 1952.008301 | 0.911088 | 1.822176 |
| 1967.249268 | 0.917615 | 1.83523  |
| 1982.490356 | 0.924373 | 1.848746 |
| 1997.648682 | 0.931048 | 1.862096 |
| 2012.889526 | 0.937543 | 1.875086 |
| 2028.130615 | 0.944084 | 1.888168 |
| 2043.371582 | 0.95072  | 1.90144  |
| 2058.308838 | 0.956621 | 1.913242 |
| 2073.549805 | 0.962534 | 1.925068 |
| 2088.790771 | 0.968871 | 1.937742 |
| 2104.031738 | 0.974948 | 1.949896 |
| 2119.596436 | 0.981396 | 1.962792 |
| 2134.837402 | 0.987005 | 1.97401  |
| 2150.078369 | 0.99326  | 1.98652  |
| 2165.319336 | 0.998801 | 1.997602 |

#### Look-Ahead VSP



**2nd order Polynomial Fitting** D=419.01 $t^2$  - 405.19t + 1300.6

TWT of Top Permian Carbonate: X.2306sec Predicted Depth: XX81.5m MD Sonic not used for Extrapolation

#### *SFORCE*

#### Look Ahead Prediction Using VSP-Calibrated RT-Sonic

| MD        |         |         |
|-----------|---------|---------|
|           | OWI-SKD | TWT-SKD |
|           |         |         |
| 1717.2205 | 0.79659 | 1.59318 |
| 1722.2205 | 0.79898 | 1.59796 |
| 1727.2205 | 0.8014  | 1.6028  |
| 1732.2205 | 0.80377 | 1.60754 |
| 1737.2205 | 0.80611 | 1.61222 |
| 1742.2205 | 0.80843 | 1.61686 |
| 1747.2205 | 0.8108  | 1.6216  |
| 1752.2205 | 0.81305 | 1.6261  |
| 1757.2205 | 0.81543 | 1.63086 |
| 1762.2205 | 0.81803 | 1.63606 |
| 1767.2205 | 0.8206  | 1.6412  |
| 1772.2205 | 0.82321 | 1.64642 |
| 1777.2205 | 0.82582 | 1.65164 |
| 1782.2205 | 0.82825 | 1.6565  |
| 1787.2205 | 0.83088 | 1.66176 |
| 1792.2205 | 0.83343 | 1.66686 |
| 1797.2205 | 0.83608 | 1.67216 |
| 1802.2205 | 0.83862 | 1.67724 |
| 1807.2205 | 0.84125 | 1.6825  |
| 1812.2205 | 0.84383 | 1.68766 |
| 1817.2205 | 0.84646 | 1.69292 |
| 1822.2205 | 0.84895 | 1.6979  |
| 1827.2205 | 0.85159 | 1.70318 |
| 1832.2205 | 0.85421 | 1.70842 |
| 1837.2205 | 0.85651 | 1.71302 |
| 1842.2205 | 0.85899 | 1.71798 |
| 1847.2205 | 0.86147 | 1.72294 |
| 1852.2205 | 0.86398 | 1.72796 |
| 1857.2205 | 0.86656 | 1.73312 |
| 1862.2205 | 0.86903 | 1.73806 |
| 1867.2205 | 0.8714  | 1.7428  |
| 1872.2205 | 0.87369 | 1.74738 |
| 1877.2205 | 0.87592 | 1.75184 |
| 1882.2205 | 0.87823 | 1.75646 |
| 2332.2205 | 1.06056 | 2.12112 |
| 2337.2205 | 1.06246 | 2.12492 |
| 2342.2205 | 1.06431 | 2.12862 |
| 2347,2205 | 1.06617 | 2.13234 |
| 2352 2205 | 1.06803 | 2.13606 |
| 2052.2205 | 1.00000 | 2.10000 |



**2nd order Polynomial Fitting:** D=447.67 $t^2$  – 482.24t + 1343.4

TWT of Top Permian Carbonate: X.2306 s Predicted Depth: XX75.0 m MD Since Sonic log extends till XX52m MD, we have better control over the Depth extrapolation



#### Look-Ahead VSP



# Look Ahead Prediction using RT-Sonic Log and Seismic Velocity Sonic Velocity Sonic Velocity Sonic Velocity



Integrating seismic and sonic velocity gives more accurate profile compared to Seismic alone



## Depth Corridor Stack: Time to Depth Conversion Using Calibrated Velocity Model by Travel Time Tomography



Previous model was blocked and calibrated with VSP times (left) used for depth converting corridor stack (right)

#### ♦ FORCE





Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

## Summary

- From the different used methodologies, the estimated top of carbonates depths were obtained
- > Predicted depth different methods:

XX81m MD, XX75m MD, XX71m MD & XX79m MD

AVG : XX76.5 m MD. (+5 m from final drilled depth)

Look-Ahead VSP









# Multiples – Analysis From VSP



Stavanger, 04-Oct-2022

# **Borehole Multiples**

## **Upgoing Multiples**





# **Borehole Multiples**

# **Downgoing Multiple**





# **Borehole Multiples**

# **All Multiples**





# **Corridor Stack**





## First Residual Wavefield (Wavefield Separation)



Time



#### **Input: Downgoing After Wavefield Separation**





## **Downgoing (Primaries and Multiples) – Zero Phase**









#### **Downgoing (Primaries Only) – Zero Phase**







#### **Downgoing (Multiples Only) – Zero Phase**

Deconvolved Downgoing wavefield : Subtraction of wavefields







#### **Input: Upgoing after Wavefield Separation**





#### **Upgoing (Primaries and Multiples) – Zero Phase**



RECEIVER\_POSITION\_Z (m)



Deconvolved Upgoing wavefield : Prediction Time (2.5 sec), Waveshaping Deconvolution (50ms)



#### **Upgoing (Primaries Only) – Zero Phase**



RECEIVER\_POSITION\_Z (m)



Deconvolved Upgoing wavefield : Prediction Time (50ms) Waveshaping Deconvolution (50ms)



#### True Amplitude Amplitude Scale Change

#### **Upgoing (Multiples Only) – Zero Phase**





#### True Amplitude Upgoing (Multiples Only) – Zero Phase & Multiple Corridor Stack 1



RECEIVER\_POSITION\_Z (m)



CS1: Start Time: TT + 150ms Window Length: 100ms, and 8 traces above 605.27m TVDSS are chosen for the look ahead section.





# Upgoing (Multiples Only) – Zero Phase & Multiple Corridor Stack



RECEIVER\_POSITION\_Z (m)



Deconvolved Upgoing wavefield : Subtraction of wavefields

**True Amplitude** 

CS2: Start Time: TT + 150ms Window Length: 100ms, and 8 traces above 1092.75m TVDSS are chosen for the look ahead section.



2

Fundamentals of Borehole Seismic Technology (Kelsall, Rufino & Guerra, 2022)

# Upgoing (Multiples Only) – Zero Phase & Multiple Corridor Stack



RECEIVER\_POSITION\_Z (m)



Deconvolved Upgoing wavefield : Subtraction of wavefields

**True Amplitude** 

CS3: Start Time: TT + 150ms Window Length: 100ms, and 8 traces above 1802.03m TVDSS are chosen for the look ahead section.



3
#### Corridor Stacks (Multiples and Primaries) with Surface Seismic - TOP



No shift applied to Surface Seismic



ZERO-PHASE

REFLECTIVITY









## Phase Analysis & Borehole Seismic Quantitative Match

Stavanger, 04-Oct-2022

#### Corridor Stack with Seismic along well – Time – Top



No time and phase shift is applied to the surface seismic



#### Phase Analysis – Correlation Map

**Maximum** Correlation Point

- Maximum coherence of 0.8341 is observed at -0.002s time shift and 13deg phase shift.
- Without any phase shift the maximum coherence is at -0.003s time shift





#### Corridor Stack with Seismic along well – Time – Top



No time and phase shift is applied to the surface seismic



#### Corridor Stack with Phase and Time Shifted Seismic





#### Quantitative Borehole Matching - terminology





#### **Quantitative Borehole Matching** - terminology

- The algorithms derive from Roy White's original partial coherency matching (1980), *extended to include frequency-dependent Predictability and Confidence*
- **Predictability** frequency-dependent measure of similarity between two traces
- **Confidence** statistical confidence measure calculated for the Predictability
- Goodness of Fit normalized cross-correlation between filtered VSP and Seismic
- **Transfer Function (wavelet)** from spectral division between Seismic and VSP

 $seismic(t) \sim vsp(t) * tf(t) \rightarrow w1(t) \sim w2(t) * tf(t)$ 

→  $TF(f) \sim W1(f)W2^*(f) / W2(f)W2^*(f)$ 

| eophysical Prospecting, 1980, 28, 333-358. |
|--------------------------------------------|
|                                            |
|                                            |
| PARTIAL COHERENCE MATCHING OF              |
| SYNTHETIC SEISMOGRAMS WITH SEISMIC         |
| TRACES*                                    |
|                                            |
|                                            |

R.E. WHITE\*\*



## Standard three-way well ties



#### Standard well tying workflows provide:

- Indicators of match quality using synthetics & VSP: *correlation coefficient, time and phase shifts*
- Best matching location using synthetic
- Seismic wavelet extracted using reflectivity log

Quantitative borehole matching makes full use of the VSP corridor stack.

→ What does it provide?



#### Predictability, confidence and seismic wavelet

**PSDM** in time



#### Using VSP corridor stack:

- Analysis time window of 450 ms around target
- Predictability over ~ 5 - 45Hz
- Confidence > 90% ٠ over 5 - 45Hz
- The Transfer Function is a simple wavelet, carrying the time and phase-shifts

9



### VSP scanning around the well

Area of study: 2 km x 2km



- At best match location with predictability of 69%, the seismic is phase rotated 41° and shifted 12 ms
- At well location, the seismic is phase rotated by 51° and shifted 21 ms relative to the VSP
- The cross-correlation of VSP & seismic is low far from the well and there are faults, thus the discontinuities



#### **Correcting time and phase shifts** *(inline)*





#### **Correcting also the amplitude spectra** *(inline)*





#### **Correcting also the amplitude spectra** (crossline)

4-80 Hz corridor stack

4-80 Hz corridor stack

at best matching location at best matching location **VSP** match PSDM filtered



#### **Frequency Spectra**

- Surface seismic frequency spectrum is not flat
- VSP waveshape deconvolution wavelet is Butterworth 6<sup>th</sup> order
- After match filtering the surface seismic spectrum is balanced over the usable bandwidth











## Q(z) Factor



Stavanger, 04-Oct-2022

## Q Analysis





### Q Analysis by Spectral Ratio Method



The multi spectral ratio method uses all possible pairs of receivers to improve the statistical significance of Q estimates. The total number of trace pairs available from N traces is N (N-1)/2. In practice about half of all possible receiver point pairs have insufficient time difference and can be discarded based on a quality of fit condition coefficient threshold.



#### True amplitude Cable Legth = Measured Depth

## Muted Downgoing Wavefield – Input for Q(z) Analysis



- Source Signature Deconvolution in Raw Shots
- Stack Raw Shot after SSD
- - Wave field separation - Velocity filter
- Muting around First Arrival
  - 60ms



#### Time [s]



#### Q Analysis – Multi-Spectral Ratios and Spectral Ratios



#### Q(z) VSP layered Velocity Model – Input for Surface Seismic Migration











#### **NPD FORCE Geophysical Methods Group**

#### Fundamentals of Borehole Seismic Technology



## **VSP Shear Waves**

Armstrong et al 2001

Stavanger, 04-Oct-2022

### Land VSP P-Wave Source Shear Waves & Sonic Calibration





Armstrong et al 2001



## Land VSP P-Wave Source Shear Waves & Sonic Calibration





## Land VSP P-Wave Source Zero Offset VSP



#### **VSP** Shear Waves & Sonic Calibration



Drift DTSM: 6ms



#### **ZVSP and Synthetics**





#### *◇ FORCE*

#### **Offset VSP Processing**



*◇ FORCE* 

#### **2D Elastic Model Calibration and Validation**



S-Wave

Tomographic travel time inversion.

PrP and PrS colored events are overlaying the real data. Velocity model fits arrival travel times and reflected waves.

#### FORCE

#### **Offset VSP PrP and PrS Images**

#### P wave Image



#### Ps Image

#### Benefits

- Elastic Model
- Qp and Qs
- OVSP Fault Confirmation

#### Aid on Surface Seismic Processing

- Multicomponent acquisition and processing.
- AVO calibration













#### Benefits of Walkaway VSP

**Lateral reflection coverage under and away from the well:** Walkaway VSP reflection points extend und and away from both sides of the well. The resulting image similar benefits of deconvolution and band width seen in the VSP.

**Shear velocity:** Mode-converted down and up shear generated from the oblique ray-path can be used to determine shear velocity.

**PS & SS reflectivity**: Mode-converted shear generated from the oblique ray-path can be used to observe where mode conversions occur and what the PS and SS wavefield is.

**Direct measurement of AVO/AVA:** A direct measurement of AVO/AVA of reflectors directly beneath the bottom of the receiver array can be made.

**Direct measurement of anisotropy:** A direct measurement of polar anisotropy parameters can be made. Multiple walkaway lines can provide azimuthal anisotropy analysis.

**Q filter determination:** A Q filter more applicable to surface seismic can be determined using the downgoing wavefield from the walkaway.



#### Walkaway Survey Design



Ray Tracing

**Reflection Points** 



# Walkaway VSP for Imaging 3C Vector Wavefield Decomposition Down P Donw Ps Reflected P-p Reflected P-s





#### Anisotropy Estimation by Slowness and Polarization




#### Isotropic & Anisotropic TT residuals



Diffraction related focusing of direct arrival causing TT picking ambiguity – near surface overburden effect?

Scott Dingwall, Jean-Claude Puech & Fraser Louden, EAGE 2003

## Walkaway VSP to guide sidetrack - offshore





# WVSP Imaging: Converted P->S, together with Pp image



#### Benefits

- Elastic Model
- Base of Salt confirmation
- Pinch-out mapping
- Help on 3DVSP design

8

### Zero Phase NMO corrected upgoing scalar compressional wavefield



Scott Dingwall, Jean-Claude Puech & Fraser Louden, EAGE 2003



#### VTI Model Validation -2



Qualitative AVO comparison – VTI synthetic & measured

Scott Dingwall, Jean-Claude Puech & Fraser Louden, EAGE 2003





Quantitative AVO comparison – VTI synthetic & measured

Scott Dingwall, Jean-Claude Puech & Fraser Louden, EAGE 2003





*◇ FORCE* 





#### Summary

• Objective driven and integrated survey design, acquisition & interpretation key to success

- AVO ambiguity resolved via integration of full waveform sonic data and multi offset VSP
- Borehole calibration essential for long offset AVO



#### **Additional Value**

• Calibrated 1D VTI model subsequently used for true amplitude pre-stack parameterisation of surface towed streamer volume

- Calibration of anisotropic pre stack time velocity model
- Entire 3D acquisition volume to be re-processed based on test borehole calibrated processing project

