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What’s coming up

* Context
- admitting to my own biases

* Modelling and the role of models
- what is a model, and what properties do models have

* Inference
- how do we learn about models from data
» Specification of priors
- elicitation and thinking about models generatively

« Choosing appropriate models
- should your data define your models?

* Practical advice
- some tips if you want to approach your problems in a Bayesian manner




Context

What are my assumptions (biases)

* Why care about uncertainty?

- typically, a decision problem drives everything
should we do A, B or C?

- informed by an estimation problem and a loss function - expected loss
= how much oil, gas, can we produce / find? What about GORs? Where is the fluid?

- but we rarely know everything!

« Uncertainty is subjective

- | know different things to you
so this means my uncertainty can be very different to yours

- reality is not random, it just is
but it is imperfectly known

- (Bayesian) probability provides a consistent framework for representing uncertainty theoretically
the Bayesian part is more about updating beliefs

« A modelis a tool to help us understand a (decision or estimation) problem
- physically motivated, e.g. conservation equations - partial differential equations + empirical ‘closures
- data driven, e.qg. observations - statistical and ML models
all models are wrong, some are useful
* We rarely have real problems where we know nothing before measuring

the model represents our prior assumptions
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What I1s a model

Are physical and statistical models different?

* |n essence a model imposes constraints on the solution space of a given problem
helpful to sketch ideas in 1D, but generalises to any number of dimensions

consider a very general equation y = f(x) + e where x is the ‘input’ and y is the ‘response’, and e is the ‘noise’
= differential equation e.g. dy/dt = a*d?y/dx? [Vier = flyp) + €]
linear in parameters regression: y = m*r(x) + c

both types impose a constraint over the admissible solutions
both are in essence based on ‘smoothness’ or ‘conservation’ assumptions
both have parameters (state) which must be estimated

the noise term is important too — “model error” and “observation error”

 The above conclusions generalise to all physical and statistical models
- most physical models are dynamic, so relate more directly to spatio-temporal statistical models

« Given that all models are wrong, we need to talk about uncertainty
- and all observations are wrong too...

- fitting / training / calibrating models ... all in essence inference in a probabilistic setting
maximum likelihood, Bayesian, Kalman filter, ...
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Fitting models to data

How do we use observations to constrain our judgements
« Before we see any observations, our model is an expression of our prior beliefs

- think about models as being generative allows us to reason about our priors

« Start with something super simple
- a 1D example thinking about permeability in a section of a reservoir — this is a truly trivial model!
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Fitting models to data

How do we use observations to constrain our judgements
« Before we see any observations, our model is an expression of our prior beliefs

- think about models as being generative allows us to reason about our priors

« Start with something super simple
- a 1D example thinking about permeability in a section of a reservoir
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Fitting models to data

How do we use observations to constrain our judgements

« Before we see any observations, our model is an expression of our prior beliefs
- think about models as being generative allows us to reason about our priors

« Start with something super simple

- a 1D example thinking about permeability in a section of a reservoir

But remember the
observation is likely to
have some noise...

Probability Density
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Fitting models to data

How do we use observations to constrain our judgements

« Before we see any observations, our model is an expression of our prior beliefs
- think about models as being generative allows us to reason about our priors

« Start with something super simple
- a 1D example thinking about permeability in a section of a reservoir
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What is elicitation?

The art of specifying priors
» This talk is not about elicitation, but we need to consider some of the challenges

» Elicitation of (expert) uncertainty is well studied, especially for univariate problems
- e.g. the SHELF tool from Jeremy Oakley and Tony O’Hagan:

SHELF: individual distributions

= Multiple experts

Eliciting individual distributions from multiple
experts. Includes methods for mathematical

aggregation using linear pooling.

ey ‘ Access multiple experts online

- inoil and gas, Martin Neumaier et al have done nice work with their ‘dancing distributions’ ArianeLogiX

« However there remain many challenges
- handling multivariate problems, e.g. spatial fields, complex models, correlated variables
- this is where thinking generatively really helps
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Thinking generatively

How to understand your models

A model is a mapping from inputs X, to outputs y: y=f(x;w) + e
- it will typically depend on parameters w

regression coefficients, diffusion parameters, forcing / boundary values, etc
without going into detail, I'd also include hyper-parameters here ...

* Imagine we want to ‘think about what f()’ looks like before we see data
- this requires us to simulate (Monte Carlo, if you like) from the possible f's that correspond to our beliefs
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« Thinking about models generatively helps you understand what they can do, what their assumptions

are and whether they are relevant to what you are trying to do
- it can be a challenge to visualise in many dimensions, but is worth doing where possible
- you still need to elicit your beliefs about the uncertain quantities
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Model complexity and learning

How can you use data to reduce uncertainty

Bewar.e the power mo.de”er : _ Digital twias cousins remain
- exc|tfe|cll bﬁ/ the complexity of their model, often use terms like: popular concepts
= full physics

= high resolution

These are not intrinsically bad things but ask yourself two questions

- what do | actually care about?
- does my knowledge and observations support this complexity?

Imagine weather forecasting ... if | had to decide whether to go fishing in my boat next weekend ...

- in general | would use a physics driven model ...
- and if | wanted to know whether it will rain here in the next 30 minutes I'd use a data driven model ...

... but recently ML
based models have
been shown to perform
as well as, if not better
than, physics-based
models, at least on
some key metrics
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Big data?

When do your (model) assumptions really matter?

 We've seen lots of news around large language models ... ChatGPT etc ...
- deep learning has been popular in the ML community for some years
- but ... I'd argue that is not relevant to a lot of problems we face

» |If you are Amazon, Microsoft, or Google you probably have big data ...
- but big is relative to the problem space, and the data information content

Interpolation is less dependent
on the prior, but this is not
true for extrapolation

- we are considering the subsurface with large spatial (x,y,z) variability and very few direct measurements

using remote sensing, e.g. seismic, can help, but has its own challenges — that’s another talk!
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Probability: calibration vs sharpness

Approximately right vs precisely wrong?

» Probabilistic methods seek to produce the sharpest distribution, subject to calibration
- when we model, too often we only look at the expectation (mean) and related metrics (RMSE, Std Error)

« Checking for calibration is tricky
- you need repeated measurements to validate your probabilistic model

- but reality only happens once so you need to consider ergodicity or exchangeability (c.f. iid)
a sufficiently large collection of random samples from a process represents the statistical properties of the entire process

- basically, can you assume errors from different locations / times can be compared

Z-Scores Plot for Model Residuals

% === Z-Score = +2
34 X — Z-Score =0
_ QQ Plot for Model Residuals
0.25 Observed values x Z-5core = -2 - perfe
—— Model prediction
2 e —————————————————————————————————————————— e ———
0.20 x b
X
X X x
5 X
g 0.15 x X 2 X
a
> v X x x X fa » X w )?<
Z
Z S 5 X 0N xxvx X % X - e XX
© wn X * x X
X X X X %
£ 010 N ot X X % R X X o
= * ® X x x x X
-1 x x x x x
0.05 A
X »® % »
—2 g T T T s s s m—m———m———- b ittt X—=—m—————————- =
0.00 T T T T T T T T T
-7.5 =50 =25 0.0 2.5 5.0 7.5 10.0 12.5
Value
73 -
X
T

Observation



A list of questions to ask (yourself)

Avoiding bias and making decisions

 We don’t see our biases — blind spot effect

* We often put more weight on the first piece of information we see — anchoring bias
- similarly, some prefer ‘trusted’ older data — conservatism bias
- while some put undue weight on more recent data — recency bias

« We are prone to over-weighting data supporting our view — confirmation bias
- this extends to us seeing what we expect as being more important — choice-supportive bias
- and tending to put more weight on our successes — survivor bias

 We also tend to be influenced by others — bandwagon effect

« Overall, while we try to be objective, almost all studies show that even if you think you are, you are
probably wrong!
all people are biased, some are honest

* Itis important to note that these biases are not malicious
- the best method | know to minimise them is to justify your evidence publicly
- and work in teams to challenge each other




Practical implications

Keep it simple ...

* Elicitation and bias

- where possible involve multiple experts
try to be aware of your biases

- once you have elicited your priors treat the models generatively
= do the outcomes look plausible?

 Selection of models

- prefer simpler explanations over complex ones (Occam’s razor)
case by case consideration, depending on level of knowledge and available data
- don’t forget about model error!

- emulation / surrogate models provide a solution to using numerically intensive models

« Design of experiments
- if you can, don’t forget the power of choosing where to observe
careful selection of measurements can be just as important as selection of good models
« Validation — calibration ...

- don’t only focus on expectation
try to validate the uncertainty too




Key take homes

Uncertainty is subjective — it depends on what you know, so think of beliefs
- probability is a natural, consistent framework to represent uncertainty
be aware of potential biases
- reality is not uncertain, but is unknown

Being Bayesian is a state of mind
- not just p(y|X) o p(X]y)p(y)

The goal is often a decision problem - cost/loss

- solving your specific problem is often simpler than solving all problems!
S0 you may be better severed building a model to solve each problem

Prefer models you can understand, or at least have some intuition about

- you can't elicit what you don’t know about

- linear (in parameter) models where plausible
as simple as possible, but no simpler

- treat your model generatively to check your assumptions

If you have a lot of data, you can worry less about your model
- but extrapolation will always depend on your model
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Thanks for your attention
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