Can geologists and statisticians communicate? Generative models as a tool supporting communication, elicitation and learning.

Dan Cornford, IGI Ltd

FORCE meeting on

Making good decisions under subsurface uncertainty: How difficult can it be?

6-7 Feb 2024

What's coming up

Context

- admitting to my own biases
- Modelling and the role of models
 - what is a model, and what properties do models have
- Inference
 - how do we learn about models from data
- Specification of priors
 - elicitation and thinking about models generatively
- Choosing appropriate models
 - should your data define your models?
- Practical advice
 - some tips if you want to approach your problems in a Bayesian manner

Context

What are my assumptions (biases)

- Why care about uncertainty?
 - typically, a decision problem drives everything
 - should we do A, B or C?
 - informed by an estimation problem and a loss function \rightarrow expected loss
 - how much oil, gas, can we produce / find? What about GORs? Where is the fluid?
 - but we rarely know everything!
- Uncertainty is subjective
 - I know different things to you
 - so this means my uncertainty can be very different to yours
 - reality is not random, it just is
 - but it is imperfectly known
 - (Bayesian) probability provides a consistent framework for representing uncertainty theoretically
 - the Bayesian part is more about updating beliefs
- A model is a tool to help us understand a (decision or estimation) problem
 - physically motivated, e.g. conservation equations \rightarrow partial differential equations + empirical 'closures'
 - data driven, e.g. observations \rightarrow statistical and ML models

all models are wrong, some are useful

• We rarely have real problems where we know nothing before measuring

the model represents our prior assumptions

What is a model

Are physical and statistical models different?

- In essence a model imposes constraints on the solution space of a given problem
 - helpful to sketch ideas in 1D, but generalises to any number of dimensions
 - consider a very general equation y = f(x) + e where x is the 'input' and y is the 'response', and e is the 'noise'
 - differential equation e.g. $dy/dt = a^*d^2y/dx^2$ $[y_{t+1} = f(y_t) + e]$
 - linear in parameters regression: y = m*r(x) + c
 - both types impose a constraint over the admissible solutions
 - both are in essence based on 'smoothness' or 'conservation' assumptions
 - both have parameters (state) which must be estimated
 - the noise term is important too "model error" and "observation error"
- The above conclusions generalise to all physical and statistical models
 - most physical models are **dynamic**, so relate more directly to spatio-temporal statistical models
- Given that all models are wrong, we need to talk about uncertainty
 - and all observations are wrong too...
 - fitting / training / calibrating models ... all in essence inference in a probabilistic setting
 - maximum likelihood, Bayesian, Kalman filter, ...

- Before we see any observations, our model is an expression of our prior beliefs
 - think about models as being generative allows us to reason about our priors
- Start with something super simple
 - a 1D example thinking about permeability in a section of a reservoir this is a truly trivial model!

- Before we see any observations, our model is an expression of our prior beliefs
 - think about models as being generative allows us to reason about our priors
- Start with something super simple
 - a 1D example thinking about permeability in a section of a reservoir

- Before we see any observations, our model is an expression of our prior beliefs
 - think about models as being generative allows us to reason about our priors
- Start with something super simple
 - a 1D example thinking about permeability in a section of a reservoir

- Before we see any observations, our model is an expression of our prior beliefs
 - think about models as being generative allows us to reason about our priors
- Start with something super simple
 - a 1D example thinking about permeability in a section of a reservoir

What is elicitation?

The art of specifying priors

- This talk is not about elicitation, but we need to consider some of the challenges
- Elicitation of (expert) uncertainty is well studied, especially for univariate problems
 - e.g. the SHELF tool from Jeremy Oakley and Tony O'Hagan:

Multiple experts

Eliciting individual distributions from multiple experts. Includes methods for mathematical aggregation using linear pooling.

Access multiple experts online

- in oil and gas, Martin Neumaier et al have done nice work with their 'dancing distributions'
- **ArianeLogiX**

- However there remain many challenges
 - handling multivariate problems, e.g. spatial fields, complex models, correlated variables
 - this is where thinking generatively really helps

Thinking generatively

How to understand your models

- A model is a mapping from inputs x, to outputs y: y=f(x;w) + e
 - it will typically depend on parameters w
 - regression coefficients, diffusion parameters, forcing / boundary values, etc
 - without going into detail, I'd also include hyper-parameters here ...
- Imagine we want to 'think about what f()' looks like before we see data
 - this requires us to simulate (Monte Carlo, if you like) from the possible f's that correspond to our beliefs

- Thinking about models generatively helps you understand what they can do, what their assumptions are and whether they are relevant to what you are trying to do
 - it can be a challenge to visualise in many dimensions, but is worth doing where possible
 - you still need to elicit your beliefs about the uncertain quantities

Model complexity and learning

How can you use data to reduce uncertainty

- Beware the power modeller
 - excited by the complexity of their model, often use terms like:
 - full physics
 - high resolution
- These are not intrinsically bad things but ask yourself two questions
 - what do I actually care about?
 - does my knowledge and observations support this complexity?
- Imagine weather forecasting ... if I had to decide whether to go fishing in my boat next weekend ...
 - in general I would use a physics driven model ...
 - and if I wanted to know whether it will rain here in the next 30 minutes I'd use a data driven model ...

GraphCast ML model + 4 days

... but recently ML based models have been shown to perform as well as, if not better than, physics-based models, at least on some key metrics

Digital twins cousins remain popular concepts

Big data?

When do your (model) assumptions really matter?

- We've seen lots of news around large language models ... ChatGPT etc ...
 - deep learning has been popular in the ML community for some years
 - but ... I'd argue that is not relevant to a lot of problems we face
- If you are Amazon, Microsoft, or Google you probably have big data ...

Interpolation is less dependent on the prior, but this is not true for extrapolation

- but big is relative to the problem space, and the data information content
- we are considering the subsurface with large spatial (x,y,z) variability and very few direct measurements
 - using remote sensing, e.g. seismic, can help, but has its own challenges that's another talk!

Probability: calibration vs sharpness

Approximately right vs precisely wrong?

- Probabilistic methods seek to produce the sharpest distribution, subject to calibration
 - when we model, too often we only look at the expectation (mean) and related metrics (RMSE, Std Error)
- Checking for calibration is tricky
 - you need repeated measurements to validate your probabilistic model
 - but reality only happens once so you need to consider ergodicity or exchangeability (c.f. iid)
 - a sufficiently large collection of random samples from a process represents the statistical properties of the entire process
 - basically, can you assume errors from different locations / times can be compared

A list of questions to ask (yourself)

Avoiding bias and making decisions

- We don't see our biases blind spot effect
- We often put more weight on the first piece of information we see anchoring bias
 - similarly, some prefer 'trusted' older data conservatism bias
 - while some put undue weight on more recent data recency bias
- We are prone to over-weighting data supporting our view confirmation bias
 - this extends to us seeing what we expect as being more important choice-supportive bias
 - and tending to put more weight on our successes survivor bias
- We also tend to be influenced by others bandwagon effect
- Overall, while we try to be objective, almost all studies show that even if you think you are, you are probably wrong!

all people are biased, some are honest

- It is important to note that these biases are not malicious
 - the best method I know to minimise them is to justify your evidence publicly
 - and work in teams to challenge each other

Practical implications

Keep it simple ...

- Elicitation and bias
 - where possible involve multiple experts
 - try to be aware of your biases
 - once you have elicited your priors treat the models generatively
 - do the outcomes look plausible?
- Selection of models
 - prefer simpler explanations over complex ones (Occam's razor)
 - case by case consideration, depending on level of knowledge and available data
 - don't forget about model error!
 - emulation / surrogate models provide a solution to using numerically intensive models
- Design of experiments
 - if you can, don't forget the power of choosing where to observe
 - careful selection of measurements can be just as important as selection of good models
- Validation calibration ...
 - don't only focus on expectation
 - try to validate the uncertainty too

Key take homes

- Uncertainty is subjective it depends on what you know, so think of beliefs
 - probability is a natural, consistent framework to represent uncertainty
 - be aware of potential biases
 - reality is not uncertain, but is unknown
- Being Bayesian is a state of mind
 - not just $p(y|X) \propto p(X|y)p(y)$
- The goal is often a decision problem \rightarrow cost/loss
 - solving your specific problem is often simpler than solving all problems!
 - so you may be better severed building a model to solve each problem
- Prefer models you can understand, or at least have some intuition about
 - you can't elicit what you don't know about
 - linear (in parameter) models where plausible
 - as simple as possible, but no simpler
 - treat your model **generatively** to check your assumptions
- If you have a lot of data, you can worry less about your model
 - but extrapolation will always depend on your model

Thanks for your attention

