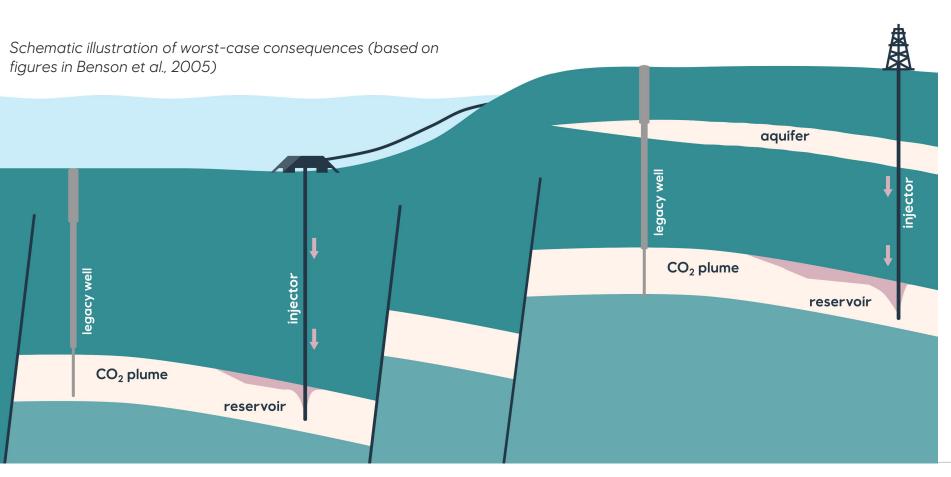


FORCE: Making good decisions under subsurface uncertainty: How difficult can it be?

Estimating leakage risk through legacy wells in a CO₂ storage site

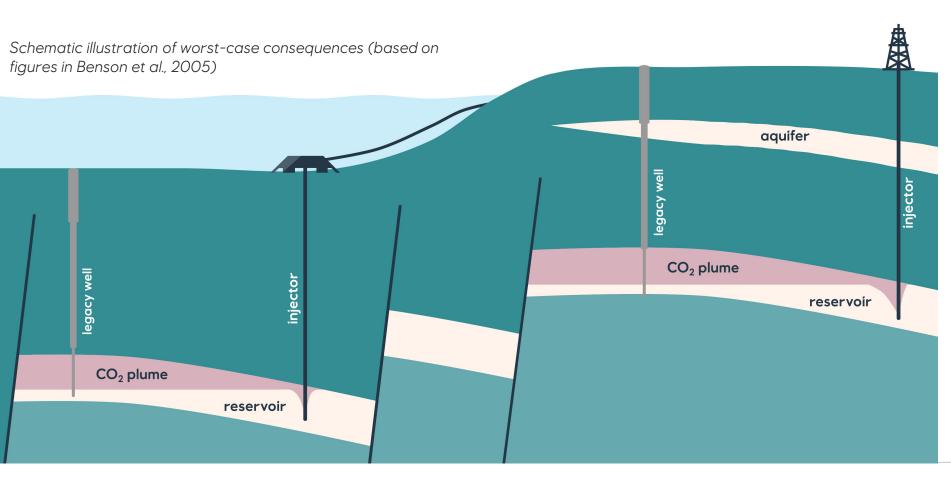
Alejandro Bello Palacios, Malin Torsæter, Jamie Stuart Andrews

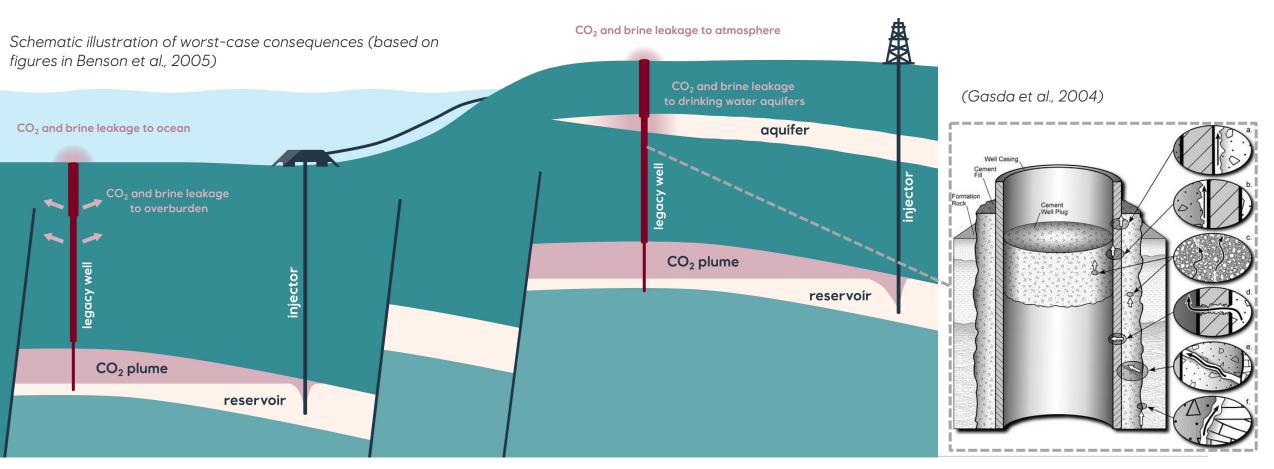
7th February 2024


Agenda

	Introduction	
\triangleright	Motivation	
E	Toolbox for legacy Wells evaluation	Preliminary analysis Simulation workflow
	Conclusion	

Legacy wells = any pre-existing well (i.e. exploration, wildcat, appraisal) that is inactive or P&A, and enters the CO_2 storage formation.


Introduction: Legacy wells



Legacy wells = any pre-existing well (i.e. exploration, wildcat, appraisal) that is inactive or P&A, and enters the CO_2 storage formation.

Introduction: Legacy wells

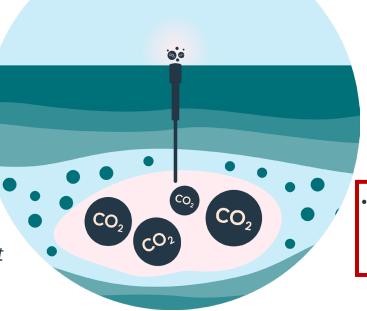
Introduction: Legacy wells

Legacy wells = any pre-existing well (i.e. exploration, wildcat, appraisal) that is inactive or P&A, and enters the CO_2 storage formation.

Leakage: Any CO_2 that has escaped through a legacy well and ended up in the atmosphere, ocean, overburden, drinking water aquifers.

5 | FORCE - Making good decisions under subsurface uncertainty

07 February 2024



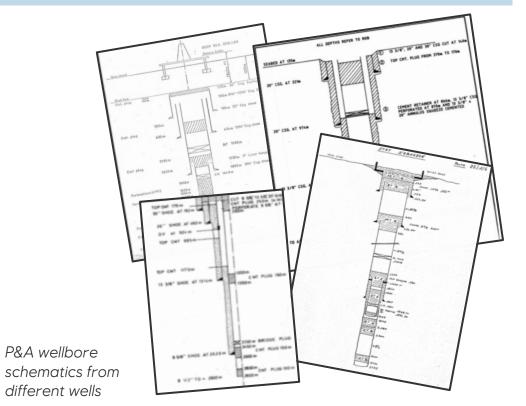
Introduction: Why are legacy wells relevant for CCS?

External drivers:

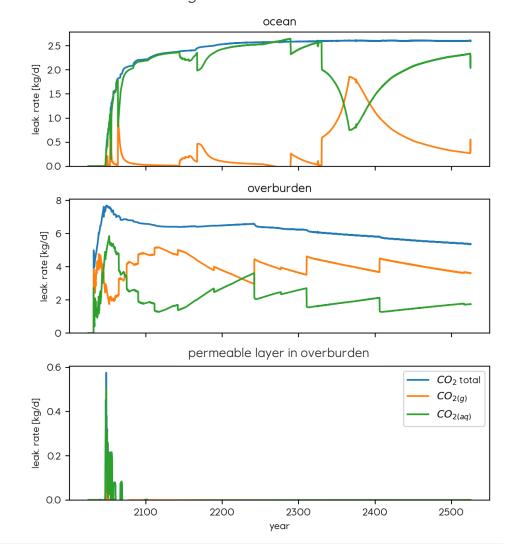
- All legacy wells identified [...] shall be evaluated
 [...] as potential leakage pathways (ISO 27914:2017).
- Operators shall provide evidence that legacy wells will function within an acceptable level of confidence [...] to the effects of CO2 storage. (DNV-RP-J2O3)
- Leakage pathways to be included in all models. Forskrift om lagring og transport av CO2 på sokkelen (§ 12-1)

Internal drivers:

• Contributes on building Equinor's credibility as a CCS operator.


• Maximize storage capacity.

Need for a fit-for-purpose tool for doing leakage risk assessments on legacy wells.



Toolbox: Script-based evaluation of legacy wells in early phase evaluation

- Develop methodology to evaluate legacy wells and estimate the potential amount of CO₂ leakage associated to them.
- Support risk analysis and decision making for the basin and site screening phase

Simulated leakage rates over time.

Input data handling

- Data relevant for legacy wells from multiple sources:
 - Subsurface data
 - Well engineering details
- Most of these wells only on archives: Manual data extraction.
- No unified standard data structure

Category	ltem	Property	Source		
Well	Well header	well name	well reports / database		
		well RKB	well reports / database		
		well td	well reports / database		
		water depth / mudline depth	well reports / database		
	Bitsize records	Top and bottom depth (MD RKB), diameter	well reports		
		Permeability*	assumed		
	Casings	Top and bottom depth (MD RKB), diameter	well reports		
		Permeability*	assumed		
	Cement bond	Min, max and most likely top and	well assesment		
		bottom depth			
		Permeability*	assumed / well assesment		
	Barriers/cement plugs	Min, max and most likely top and bottom depth	well assesment		
		Permeability*	assumed / well assesment		
Subsurface	Geological tops	Top depth (MD RKB)	well reports / database		
		Transport properties (porosity, permeability)**	assumed / asset		
	Geothermal info	Seafloor temperature	assumed / asset		
		Temperature survey (if available)	assumed / asset		
		Geothermal gradient	assumed / asset		
	Initialization	Reservoir pressure (scenarios)	asset		
		Base of CO2 (CO2-water contact depth)	asset		

Input data handling

- Data relevant for legacy wells from multiple sources:
 - Subsurface data
 - Well engineering details
- Most of these wells only on archives: Manual data extraction.
- No unified standard data structure

		men_ra_na								
		sf_temp 4 degC		degC						sf_depth_msl: 108
	geo_tgrad	40	degC/km						well_td_rkb: 2800	
										sf_temp: 4
										geo_tgrad: 40
Category	ltem	drilling								
		top_rkb	_	diameter_	in				dr	illing:
Well	Well heade	143								
vven	vennedde	190								- top_rkb: 143
		449						_		bottom rkb: 190
		1812	2800	12 1/4						diameter_in: 36
		casing_cem						_		- top_rkb: 190
	Bitsize reco			diameter_		boc_rkb				
		143								bottom_rkb: 449
		143								diameter_in: 26
	Casings	182	1803	13 3/8	450	1803	TRUE			
	g-	barriers								- top_rkb: 449
		barrier_nam	barrior tu	ton rkh	bottom_r	kh				bottom_rkb: 1812
			cplug	143						diameter_in: '17 1/2'
	Cement bo	cplug2	cplug	1690						
		cplug1	cplug	2050						- top_rkb: 1812
		001002	-p	2000	2000					bottom_rkb: 2800
	Barriers/ce	geology								diameter_in: '12 1/4'
	Durrier 5/ et			h	ottomd	lonth				
		bottom depth								
				Permeability*						asing_cement:
Subsurface	Geological	0			Top depth (MD RKB)					
					Transport properties (porosit					- top_rkb: 132
				p	ermeab	oility)**				
	Geothermo	nlinfo					atura			bottom_rkb: 158
	Oeotherme				Seafloor temperature Temperature survey (if availa					diameter_in: 30
							1 .	Ivalia		toc_rkb: 132
					Geothermal gradient					
	Initialization	Initialization			Reservoir pressure (scenarios)				as	sset
					Base of CO2 (CO2-water contact				ict as	set
					epth)					
				u	cpuij					

35 m

2800 mRKB

108 mTVDMSL

spreadsheet / csv

input data

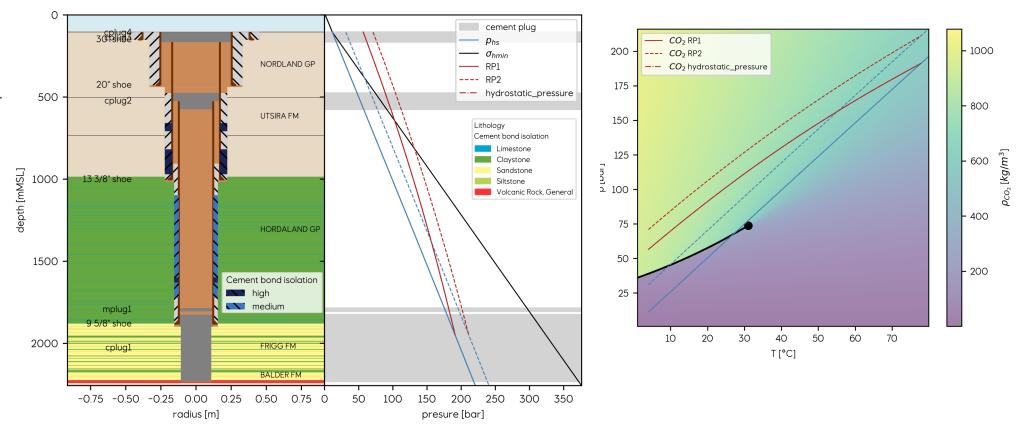
well_header well_name_Well A

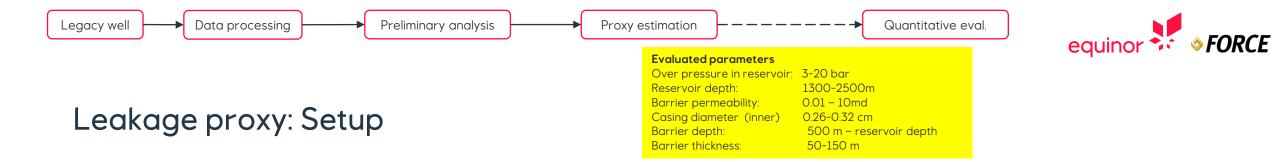
sf_depth_m

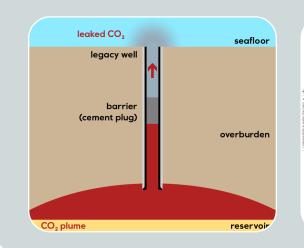
well_td_rkb

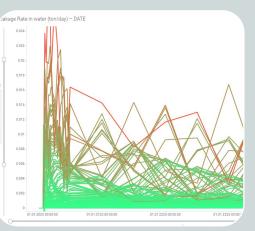
well_rkb

YAML file

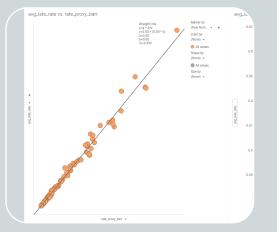

sf depth msl: 108






Preliminary analysis

- Generation of well sketch juxtaposed with subsurface data.
- Static pressure analysis for different pressure scenarios.
- P,T diagrams and phases along well.
- Tested the routine in both offshore and onshore sample occurrences of legacy wells.



$$\gamma = \frac{r^2 \cdot K}{L} (L\Delta\rho g + \Delta P)$$

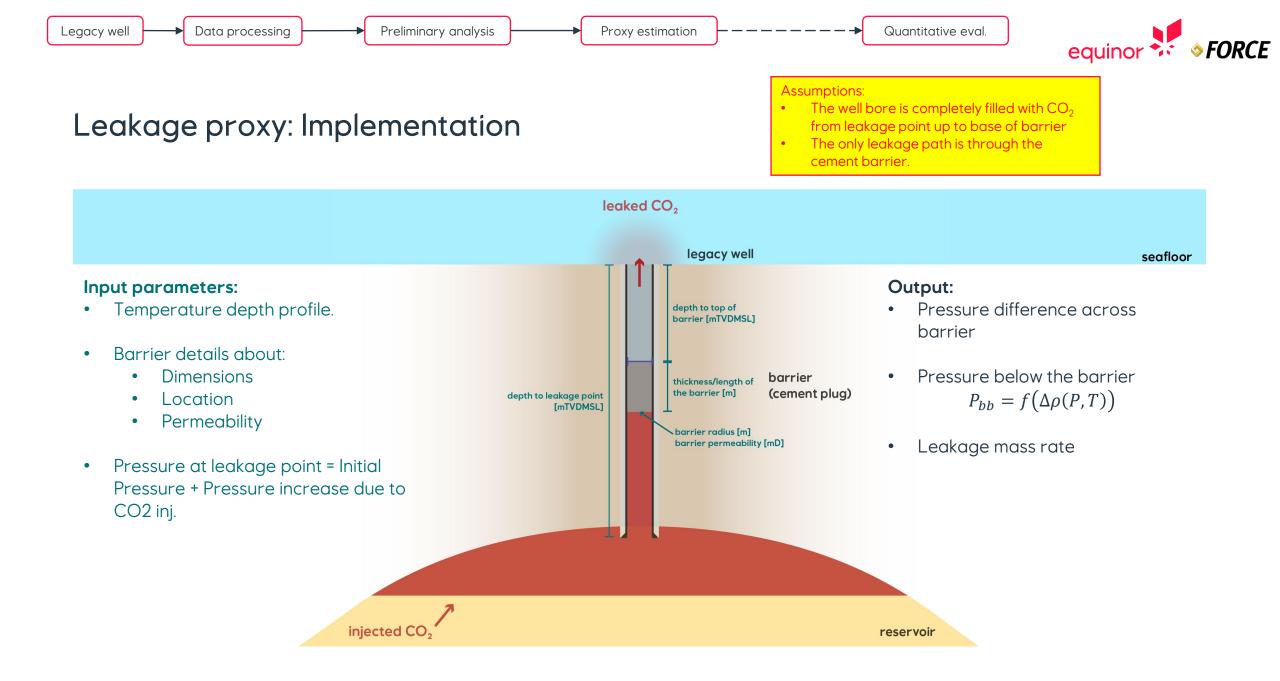
Simple model setup.

- Dome shape.
- 1 CO₂ source.
- 1 legacy well with 1 barrier.

ERT/FMU (in house ResEng tool.

Run multiple simulations (pflotran) with a systematic variation of parameters affecting leakage rate. (200 realizations)

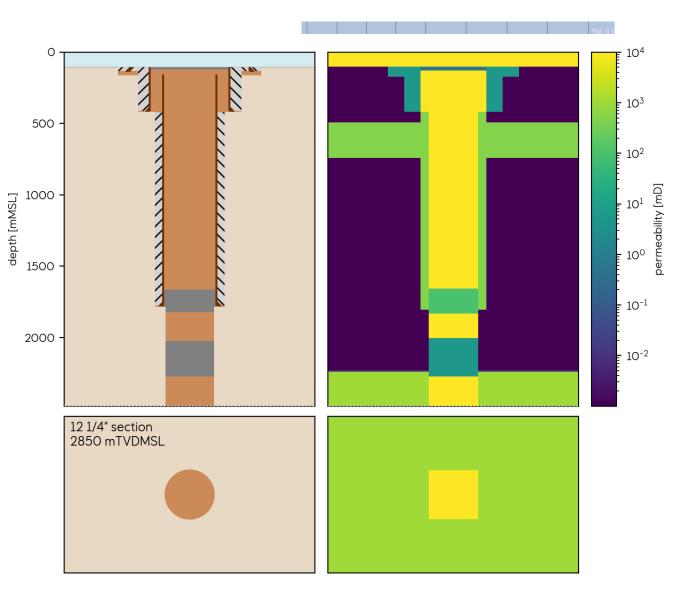
• Extract leakage rate *Q* from the cases

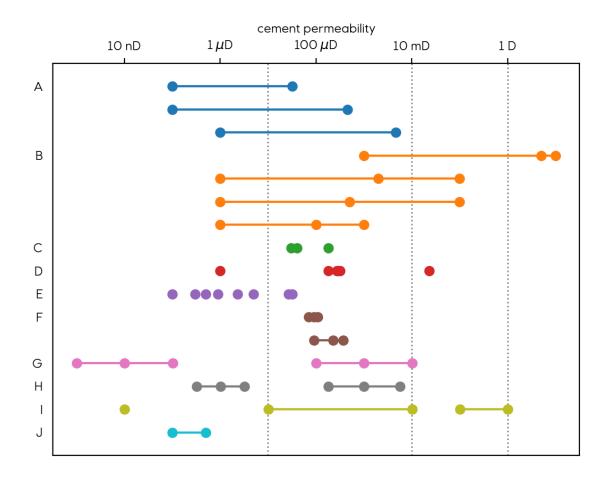

Calculate a simple scalar γ that is a combination of (some of) the input parameters.

- *r* wellbore radius
- *K* barrier permeability
- *L* barrier length
- *g* gravity acceleration
- $\Delta \rho$ density difference
- ΔP pressure difference along the barrier

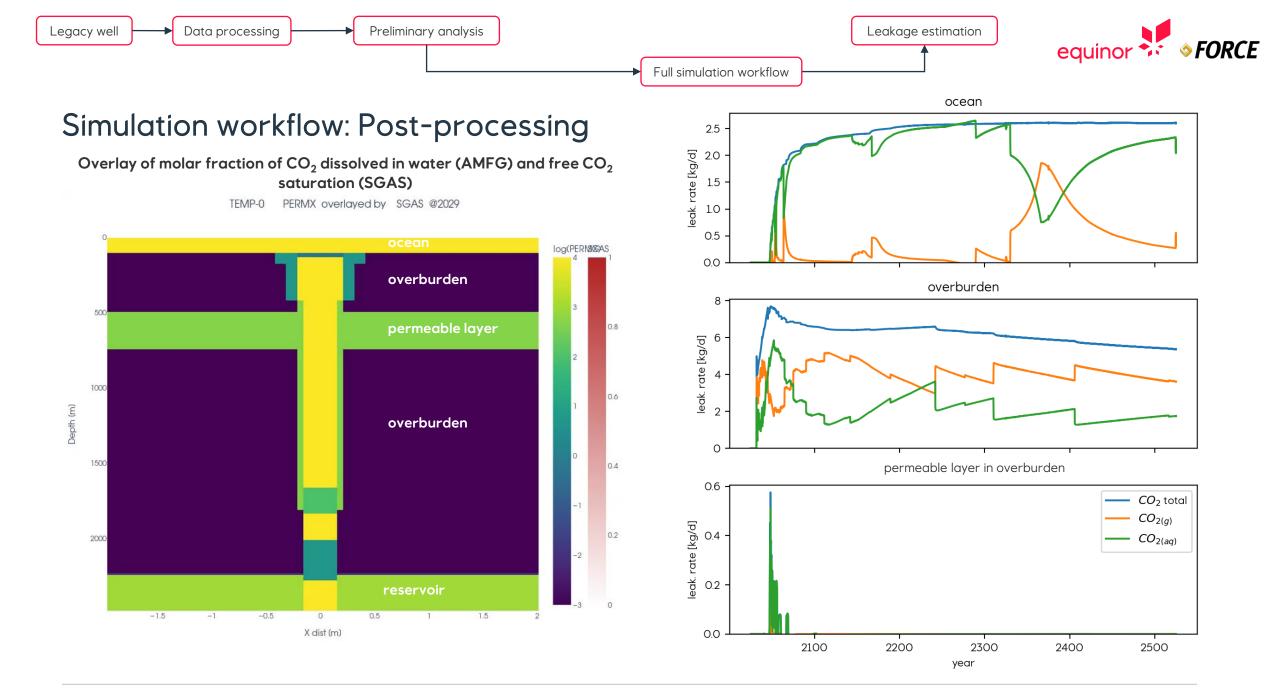
Check if the scalar correlates well with the leakage rate

 Make a proxy model to predict the leakage rate Q based on the scalar γ.

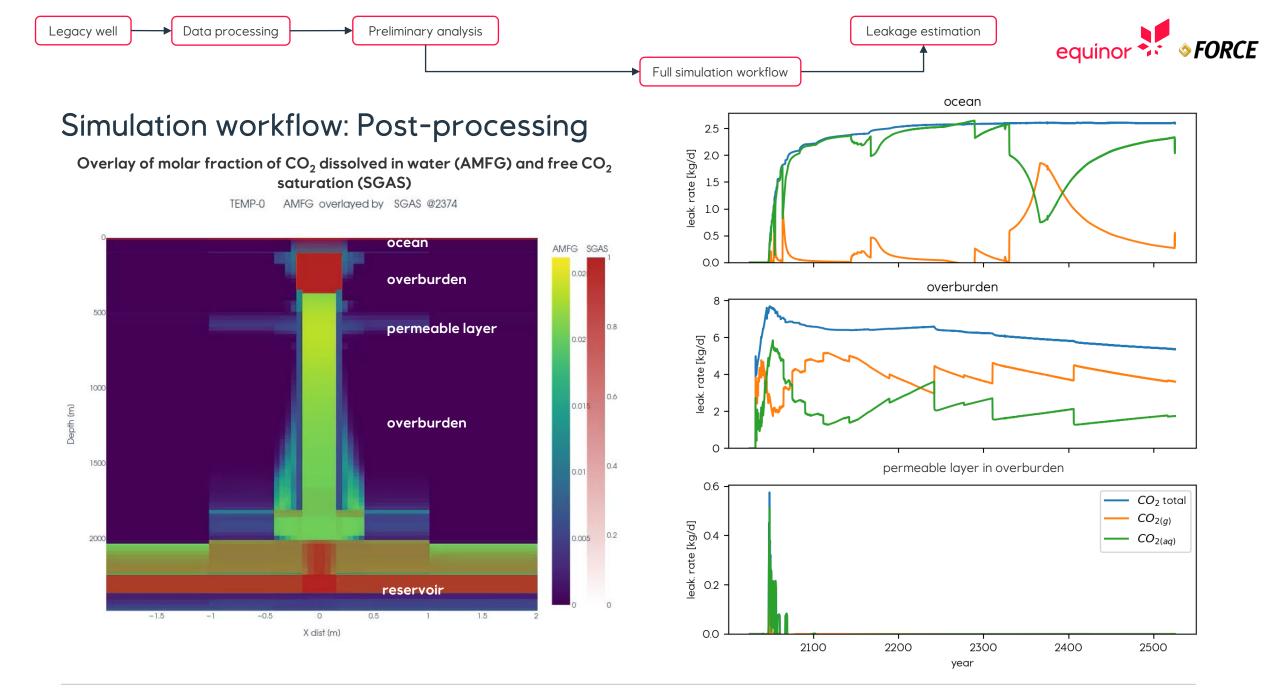

$$Q_{proxy} = a + b * \gamma$$


Simulation workflow: Pre-processing

- GAP (Grid-As-Pipe): Workflow driven by scripts that build a numerical simulation model of a legacy well.
- Simulation tool: Pflotran. Other tools considered: REVEAL and T2Well.
- Cartesian approximation of the well construction elements:
 - Borehole/Pipe/Annuli: High
 permeability elements
 - Cement plugs/bond: Low permeability
 - Casings: Transmissibility
 restrictions






Simulation workflow: Cement properties

- (A) Measured cement permeability (Gasda et al., 2013).
- (B) Ranges of permeability for (from top-to-bottom) bad cement to goodto-average cement (internal report., 2018).
- (C) Measured permeability at varying confining pressure for aged cement (Beltrán-Jiménez et al., 2022)
- (D) Measured permeability for multiple samples of retrieved aged cement (Beltrán-Jiménez et al., 2022)
- (E) Measured cement permeability for lab sample and well extracted samples (Crow et al., 2010)
- (F) Measured cement permeability for CO2 exposed cement (Carey et al., 2007).
- (G) Distribution of permeability from FutureGen project Case 1 (Low)**
- (H) Distribution of permeability from FutureGen project Case 4 (High)**
- Distribution of permeability from Gulf of Mexico (Bourgoyne et al., 2000, Tao et al., 2010)**
- (J) Range of permeability for cement in model (Godoy et al., 2015)
- ** G, H, and I compiled in NRAP study (Carey, 2018, White et al., 2020)

Conclusions and further work

The library of scripts are built to:

- •Compile and analyze data relevant to legacy wells in CCS projects.
- •Produce simplified visualizations to help assessment.
- •Produce a proxy-based estimation of leakage.
- •Parameterize the setup of simulation models of the well and its surroundings
- •Visualize simulation output.

Identified challenges:

- There is no unique balance between a generic tool and case-specific solutions.
- There are still limitations and constraints on the existing features, and a backlog of new ones to incorporate.
- Understanding of priorities can vary depending on the case study and parts involved (i.e. operator, authorities, specialists).

Thank you!

Estimating leakage risk through legacy wells in a CO2 storage site

Alejandro Bello Palacios, Malin Torsæter, Jamie Stuart Andrews

© Equinor ASA

This presentation, including the contents and arrangement of the contents of each individual page or the collection of the pages, is owned by Equinor. Copyright to all material including, but not limited to, written material, photographs, drawings, images, tables and data remains the property of Equinor. All rights reserved. Any other use, reproduction, translation, adaption, arrangement, alteration, distribution or storage of this presentation, in whole or in part, without the prior written permission of Equinor is prohibited. The information contained in this presentation may not be accurate, up to date or applicable to the circumstances of any particular case, despite our efforts. Equinor cannot accept any liability for any inaccuracies or omissions.

References

- BELTRÁN-JIMÉNEZ, K., GARDNER, D., KRAGSET, S., GEBREMARIAM, K. F., REALES, O. A. M., MINDE, M. W., DE SOUZA, M. I. L., AASEN, J. A., SKADSEM, H. J. & DELABROY, L. 2022. Cement properties characterization from a section retrieved from an oil production well after 33 years of downhole exposure. Journal of Petroleum Science and Engineering, 208, 109334.
- BENSON, S., COOK, P., ANDERSON, J., BACHU, S., NIMIR, H., BASU, B., BRADSHAW, J., DEGUCHI, G., GALE, J. & VON GOERNE, G. 2005. Underground geological storage. In: IPCC (ed.) IPCC Special Report on Carbon Dioxide Capture and Storage. UK: Cambridge University Press.
- BOURGOYNE, A., SCOTT, S. & MANOWSKI, W. 2000. A review of sustained casing pressure occurring on the OCS. Technical Report Contract. Mineral Management Service.
- CAREY, J. W. 2018. Probability distributions for effective permeability of potentially leaking wells at CO2 sequestration sites. Los Alamos National Lab.(LANL), Los Alamos, NM (United States).
- CAREY, J. W., WIGAND, M., CHIPERA, S. J., WOLDEGABRIEL, G., PAWAR, R., LICHTNER, P. C., WEHNER, S. C., RAINES, M. A. & GUTHRIE, G. D. 2007. Analysis and performance of oil well cement with 30 years of CO2 exposure from the SACROC Unit, West Texas, USA. International Journal of Greenhouse Gas Control, 1, 75-85.
- CROW, W., CAREY, J. W., GASDA, S., BRIAN WILLIAMS, D. & CELIA, M. 2010. Wellbore integrity analysis of a natural CO2 producer. International Journal of Greenhouse Gas
 Control, 4, 186-197
- DNV 2019. DNV-RP-J203 Geological storage of carbon dioxide.
- FORSKRIFT OM LAGRING OG TRANSPORT AV CO2 PÅ SOKKELEN 2014. Forskrift om utnyttelse av undersjøiske reservoarer på kontinentalsokkelen til lagring av CO2 og om transport av CO2 på kontinentalsokkelen. Olje- og energidepartementet.
- GASDA, S. E., BACHU, S. & CELIA, M. A. 2004. Spatial characterization of the location of potentially leaky wells penetrating a deep saline aquifer in a mature sedimentary basin. Environmental Geology, 46, 707-720.
- GASDA, S. E., CELIA, M. A., WANG, J. Z. & DUGUID, A. 2013. Wellbore Permeability Estimates from Vertical Interference Testing of Existing Wells. Energy Procedia, 37, 5673-5680.
- GODOY, R., FONTAN, M., CAPRA, B., KVALSUND, R. & POUPARD, O. Well Integrity Support by Extended Cement Evaluation Numerical Modeling of Primary Cement Jobs. Abu Dhabi International Petroleum Exhibition and Conference, 2015. D031S042R004.
- ISO 2017. ISO 27914:2017\Carbon dioxide capture, transportation and geological storage Geological storage.
- TAO, Q., CHECKAI, D. & BRYANT, S. L. Permeability Estimation for Large-Scale Potential CO2 Leakage Paths in Wells Using a Sustained-Casing-Pressure Model. SPE International Conference on CO2 Capture, Storage, and Utilization, 2010. SPE-139576-MS