

Utilizing Ensembles into Fully Integrated Network Models

Topic: Making Decisions under Uncertainty

Stian Håland, AkerBP, FORCE seminar 1Q-2024 *stian.haland@akerbp.com*

Introduction

- AkerBP has started to utilize reservoir model ensembles into fully integrated network models.
- The development is a result of collaboration across Digital Improvement domains.
- This presentation will discuss:
 - Technical descriptions of tools and methodologies.
 - Overall workflow and integrations points.
 - Discussions around methodology.
- AkerBP mainly uses the Petex IPM tools, but the tools are not the main point of this talk.

Why Network Modelling?

- What is Network Modelling in this context?
 - Modelling topside equipment with Dynamic reservoir models.
 - Coupling multiple reservoir models to the same topside system.
- Why don't we just use VFP tables in the reservoir simulator?
 - *Equipment*: pressure, temperature and constraints.
 - *Integration*: multiple reservoirs, third party softwares.
 - *Optimizers*: integrated optimizers and workflows.
 - *Collaboration*: with downstream disciplines.
- When do we need Network models?
 - When wells and fields have strong backout effects.
 - Multiple reservoirs competing for capacity and priority.
 - Equipment upgrades $\leftarrow \rightarrow$ Field development
- Main challenge:
 - Computing power and runtime.
 - Limited by the slowest dynamic model.

Typecurve proxies in Network Models

- What are typecurves in this context?
 - Tables of volumes and phase fractions describing well performance.
 - In GAP: Decline Curve Well with Tank.
 - Cumulative oil vs Water Cut, GOR.
 - Cumulative oil vs Reservoir Pressure.
 - Productivity Index.
 - Enough information provided to do a network solve (VLP/IPR intersection).
- Benefits of Typecurves:
 - Runs significantly faster than dynamic simulation.
 - Captures main behaviour decently for many reservoirs.
 - Allows for acceleration and deceleration of profiles.
- Downsides with typecurves:
 - Only valid for the drainage strategy that is simulated.
 - Not valid if there are a lot of reservoir dynamics.
 - Injection schemes are particularly challenging.

"Traditional" workflows

- Deterministic cases: (Typically Low, Base, High)
 - Deterministic: single cases, often P10, P50, P90 cases or specific sensitives.
 - From Ensemble: selected cases from ensemble, representatives of P10, P50, P90 for some metric.
 - All cases are internally consistent with reservoir models.
 - Does not account for the full uncertainty range.
 - Selecting cases from ensemble is not ideal.
- Our first iteration of ensemble integration:
 - From low-base-high models, extract typecurves.
 - Workflow to sample 30-40-30 (Swansons Mean).
 - Run 100 cases with varying combinations.
 - Can give a reasonable spread in uncertainty.
 - Decent approach if no ensemble available.
 - Likely combinations of unrealistic cases.
 - Need robust sampling and correlations.

"New" workflow

Utilizing all ensemble realizations directly

- Extract typecurves from all realizations.
- All typecurves are mapped directly per realization.
- Essentially N x deterministic models.
- No sampling needed; all cases are internally consistent.
- Need robust and automated dataflow to set up.
- We can combine this method with the previous methods:
 - Some reservoirs may have all realizations, while others use low-base-high, or scenario based.
 - Other uncertainties may be added as well:
 - Startup times.
 - Capacities.
 - Uptimes.
 - Need to be more careful with sampling when combining different methods.

Some results...

What have we been able to do?

- Pilot the workflows on a producing field with multiple reservoirs.
- Used the results in forecasting and reserves evaluations.

Benefits:

- Integrated multiple ensembles into the same network model.
- Accounted for network and commercial licence constraints.
- All cases are optimized in the network.
- We retain most dependencies and correlations in the reservoirs.
- Challenges:
 - Runtime is high, even with the simplifications.
 - Challenging to parallelize this workflow and software stack.
 - Large amount of data to handle, many models to QC

Deterministic: Active constraints mapping

Probabilistic: Active constraints mapping

Discussions

- What is good enough?
 - The typecurves cause us to lose some dynamic detail in the reservoir, but allow for the complex network effects to be modelled.
 - In this case, we consider:
 - The network effect *important enough* to model it.
 - The typecurves *good enough* to accept them
- Do the benefits outweigh the simplifications?
 - If we bother modelling an ensemble, why not use it all?
 - Don't need to worry about internal consistency across cases.
 - When do we need full physics, and when can we use proxies?
 - Enables integration with other disciplines.
- Where do we go from here?
 - Potential to propagate into even more disciplines?
 - Can we do Facility evaluations based on probabilities?
 - Need robust architecture, dataflow and QC tools.

Reservoir models

Basis of Design?

www.akerbp.com