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Better oil recovery

Less unwanted fluids (water,
gas)

— Reduced energy usage and CO,
emission

— Other environmental benefits

Long horizontal production well with sand screens
and inflow control technology (ICT)

Much pioneering work done
by others

— Brekke and Lien (1994; SPE-
24762-PA)

— Mathiesen et al. (2011, SPE-
145737-MS)

Taghavi et al. (2021) - OTC-31239-MS
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(Halvorsen et al., 2012; SPE-159634) (Emegano et al., 2020; SPE-202847)
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* A step-by-step recipe

— Applied for more than
40 horizontal

branches

* Summary

* Q&A




1. Understand reservoir and well objectives

Understand reservoir and well objectives D
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Reservoir Well objectives (examples)

* Expected permeability * Maximum oil recovery

* Zonation or segmentation  Gasrate < limit
— Key for zonal control possibility e \Water rate < limit

* Sand stability — will annulus stay open?  « |CT pressure drop at wanted level at
— Key input and often uncertain the design rate

* Drive mechanisms, pressure support * Inflow along well proportional to

* Expected fluid contacts potential reserves along well

e Operational constraints: Flow-check,
injection needs,...



1. Understand reservoir and well objectives

Example: 2023 development D
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Minimise gas cap offtake

Qil rim
6-7 m '
-

Drive mechanism = bottom aquifer

Taghavi et al. (2021) - OTC-31239-MS




2. Understand ICT and chase improvements

Understand available technology D
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Type 2N: Autonomous Inflow Control Devices (AICD) with
no moving parts

Technology:

e Active operated flow control valves

* Inflow control technology (API)

— Type 1: An ICD with no moving part, nozzle
ICD etc.

] v ] i ] i J o]

v

Type 2M: Autonomous Inflow Control Devices (AICD) with
moving parts

Aadnoy and Hareland (2009) SPE-122824; Garcia et al. (2009) IPTC-13863
Least et al. (2013) SPE-167379; Langaas et al. (2018) SPE-187288-PA
Langaas et al. (2023) SPE-214342-PA



Zonal isolation

* For wells with open annulus
(outside sand screens)
zonal isolation is of key
importance

 Well zonation needs to build on
any extensive reservoir barriers
or zonation

* Swell packers are commonly used

Zonal barrier (shale etc)

Swell packer

___
D
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2. Understand ICT and chase improvements

Chasing improvements D
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e AICD testing performed
~yearly at Equinor’s lab facility

 Full scale test @ reservoir
conditions

e 1 m?3 reservoir oil needed!

e Share results openly with
vendors

AICD reservoir condition test facility in Norway
(Photo: Equinor)

10



2. Understand ICT and chase improvements

Floating disk AICD D
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* Test 2015 (0.84 cP oil, 0.46 cP water)
— Better gas and water choking
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Voll et al. (2014) SPE-171149-MS and Langaas et al. (2018, 2020) SPE-187288-PA, SPE-200719-MS 11



2. Understand ICT and chase improvements

Autonomous inflow control valve D
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—P1 LFE

* Test 2022 (5.6 cP oil, 0.66 cP water) e
— Much better gas and water choking
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Langaas et al. (2023) SPE-214342-PA 12




3. Mathematical model of ICT

Mathematical model of ICT D
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. . . Measurement
 One device/valve is tested in the
laboratory :
— Single phase performance tests Mathematical
. Model
— Multi-phase performance tests
* Need mathematical model to
guantify impact
The “AICD equation” is commonly used Ap  Pressure drop (Pa)

Fluid density (kg/m3)
Volumetric rate (m3/s)
AICD strength (Pa*m3/kg)
Viscosity (Pa*s)

X, Y,z Numbers (dimensionless)
13

AP — (pmix)z (ﬂcal)yp . a (i)x
Pcal Mmix s (cal

Mathiesen et al. (2011) SPE-145737; Langaas et al. (2023) SPE-214342-PA
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4. Pre-drill well design studies

Pre-drill well design studies

-
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* Dynamic reservoir models
best

e Steady state inflow model
to QC and finetune design

1000m

e Understand what
technology is optimal

e Establish lower completion
strategy and base design

* Order equipment

— Keep some flexibility for

C . Full field 3D dynamic model and a designed MLT-3 well.
optimisation Saturation in grid at heel well depth after 12 years production
(warm colours = remaining oil)

Langaas et al. (2018) SPE-187288-PA 14



Optimise during execution

* Update reservoir
understanding
during drilling

e Understand

Fluid contacts
Reservoir pressure
Permeability
Zonation

Potential reserves
along well
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Yellow

2140

g

g

Vertical depth (mRKBTVD)

2180
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Langaas et al. (2018) SPE-187288-PA 15



5. Optimise well design during execution

Update model during execution D

k (md) Permeability

1000
MD (m)

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400

Q, (std m®d/m)

Qil influx

2
MD (m)

1 -
3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400

P (bar) Pressure (Reservoir Annulus Tubing)
2001
o s a MD (m)
190 4

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400

Q, (std m®/d)

1000 Cumulative oil influx -

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000 6200 6400

100 R (M I

3000 3200 3400 3600 3800 4000 4200 4400 4600 4800 5000 5200 5400 5600 5800 6000  620u 5400

Langaas et al. (2018) SPE-187288-PA
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e Update steady state inflow
model

— Update permeability
estimate

— Adjust swell packer position,
blank sections, (A)ICT
strength - to get wanted
inflow

— Check pressure drop at
design rate
* Typical deadline
~12 h after drilling complete

— high value creation hours $S

Shale creep assumed
- impacts zonal inflow 16



5. Optimise welldesign during execution _
Optimise well design during execution D
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Good visualisation of updated design is key for integrated team clarity

ICD
1*2.5mm 1*2.5mm

e
S
o

Vertical depth (MRKBTVD) n

2180

Langaas et al. (2018) SPE-187288-PA 1



6. Well surveillance (tracers++)

* Pressures
e Rates

 Production
logging (PLT)

* Tracers

— Confirmation of
clean-up

— Influx estimates
(restart)

— Continuous
monitoring

Well surveillance
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6. Well surveillance (tracers++)

‘Tracers: Restart (to estimate influx)

Concentration (ng/cma)

25

a) Shut-in:
Tracer cloud

b) Restart:
Production through
tracer cloud

d) Exponential decay fit of each tracer

D

Tracer Concentration (ng/cm3)
w
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c) Measure tracer
concentrations
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Langaas et al. (2018) SPE-187288-PA
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7. History match

History match of well performance D
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* Both steady state inflow model and full dynamic model can be used

— Steady state model is practical as easy to test scenarios

* Use lower completion model and try match all data
— Liquid rate
— Water-cut
— Gas oil ratio
— Flowing bottomhole pressure
— Compare model with PLT or in our case tracer-based inflow estimates

Langaas et al. (2018) SPE-187288-PA 20



. History match

2.5

History match - steady state inflow

D
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------------- Permeability

e Completion influx
Reservoir influx

© Tracer factor k

Permeability (darcy); Oil Influx (std m3/d/m)
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* Mainly oil flow —ideal for history-match uniqueness. Model had good match on lower completion dp

* Some mismatch vs. tracer-based influx estimates

Langaas et al. (2018) SPE-187288-PA
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Summary and way forward

Recipe used for 40+
horizontal well branches

Highly valuable — AICT
have enabled many new
wells

Still improving
— New AICT tested 2023

— Better zonal AICT
performance prediction
with new software

— Need shorter swell packer
intervals

22
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