Cake & Discuss The Uncertainty Study

Organization Committee

Sonja Kuhlmann

Marine Seignole

Oslo facilitator

Camilla Oftebro

7.11.2024

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

7.11.2024

HSE & Other Practicalities

Welcome to "Cake & Discuss"

TODAY:

7 November 24 The Uncertainty Study – Part2

Past sessions:

Future sessions:

7.11.2024

13 April 23 The Structural Framework	22 August 23 The Grid	XXX Data Sharing: Input and Output
7 November 23 The Property Model – Part1	23 April 24 The Property Model – Part2	
27 August 24 The Uncertainty Study – Part1		

QC of multiple realisations

Welcome to "Cake & Discuss"

- Fundamental spirit of FORCE
 - Cooperative forum
 - Facilitate cooperation within the industry
- Group discussions
 - Discussion based on impulse talk
 - Small group: Mix of experience and expertise
 - Summary session
- This is not a place where we can solve all the issues but discuss and share experiences
 - If you want to bring up a topic: suggest an impulse talk

7.11.2024

7.11.2024

How this works

- Welcome and introduction
- Divide audience into groups
- Each group chooses a discussion keeper
- "Impulse" talks round today's topic
- Discussion time after talk
 - Have you seen this?/What's your best practice?
- Round the room: each group present findings
- In total 2 impulse talks and follow-up discussion in groups and presentation to other groups
- Closeout and feedback
- Mingle, talk & enjoy food and drinks throughout the afternoon

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

7.11.2024

lime	Duration	Activity
12:30-12:55	25 min	Intro to concept Presentations "who is here today" Sort groups
12:55-13:10	15 min	1. "Impulse" talk
13:10-13:35	25 min	Group discussion
		Send picture of conclusion
13:35-13:45	10 min	Break (deliver talking points)
13:45-14:15	30 min	Presentations and overall discussion
14:15-14:30	15 min	2. "Impulse" talk
14:30-15:35	60 min (25+10+30)	Group discussion Send picture of conclusion Break (deliver talking points) Presentations and overall discussion
15:35-15:45	10 min	Closeout / feedback

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

7.11.2024

The groups

Group 1	Group 2	Group 3	Group 4	Group 5	Group 6

7.11.2024

Choose a discussion keeper

• Role:

- Keep the discussion going
- Make sure everybody in the group gets talking time
- Time keeping
- Make sure the key ideas are on the flip chart
- Find a presenter to other groups 1 presenter per impulse talk
- When problems are raised
 - -> probe for solutions
- TAKE A PICTURE OF YOUR FLIP CHART / SHARE YOUR PPT
 - Send it to <u>marine.seignole@akerbp.com</u>
 - Mention your group number in the subject

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

7.11.2024

Impulse talk topics

• Uncertainties vs. Scenarios: When & Why

• QC of multiple realisations

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

Impulse talk 1

Uncertainties vs. Scenarios: When & Why

SODIR

07.11.2024

Definitions

ORLEN Upstream Norway

<u>Scenario</u>

A specific set of input assumptions and/or constraints represented by a single ensemble member / group of members / a full ensemble. Different scenarios are used to represent deterministic values for parameters or sets of parameters (FORCE, Guideline for Ensemble Data Sharing)

Uncertainty:

Range of values within which a practically unmeasurable or unknowable parameter is estimated to lie at some level of confidence (Perez-Diaz, L. et al. 2020)

Modified from Arnold, D. et al (2018)

ORLEN

Scenarios or just uncertainty?

- Slightly different depositional environments can lead to different connectivity, properties and facies distributions
- Can all this differences be included in our uncertainty evaluation or do we need different scenarios / models?
- Different scenarios can be equally probable or not; risk to end up in the upper left circle

Modified from Arnold, D. et al (2018)

Combination of scenarios

- Combined volumetric distribution for different scenarios is not uncommon to see
- If a «close to P50» discrete case is picked, it could actually be a high case for Scenario 1
 or a low case for Scenario 2
- Is this a right choice?

ORLEN

ORLEN

Questions to discuss

- How different depositional / structural /... ideas need to be to require different scenarios
 instead of being part of the uncertainty work?
- Should different scenarios be combined into a single volumetric ensemble? Would P10-P50-P90 be representative? How to choose a proper discrete case?

7.11.2024

Group - Notes

• TAKE A PICTURE OF YOUR FLIP CHART

- Send it to marine.seignole@akerbp.com
- Mention your group number in the subject

Oslo

- Scenarios gramatically discrete break
- Does is just mean a selection from the distribution.
- Every realization is a scenario.
- When we talk about scenarios we are challenged/provoked into thinking out of the box. Some fields probably can be captured by a steady range and others require discrete differences.
- Testing scenarios to see impact
- Even when we are confident we understand a depositior model are we correctly capturing it
- There is only one distribution so P50 is as was shown
 Facilities could be constructed to best fir say P30 and P70.

7.11.2024

Group 1

EARLY I dentify sunairo min ase 3 4 may Scenario - different key mpit Adata (where not easily combined interp. without have too many comprimises. - later some scenaria combined it removed for little impact on buisness decision. Scenario for probis so low LATER _ map uncertanties on each Scenanio WHAT NEW INFO COULD HELP EXCLUDE STENARIO TO REDUCE RANKE. 2 wells Gwells Scenario -> Rec Vols

IMPACT

⇒ Sc 1 20% 40% Sc 2 400 Sc3 3

7 1 1 0004

Group 2

Scenarios Lo Connectivity La Depositional Environments 13 Structures Why uncertainty us servario Lo Volume spread is wrighting of scenarios is how different should they be 19 contacts 12 SEgments 4 "failure scenarios" -> inggetting + h 16550 **新聞**旧 > Esselte

Combined case 13 what is it for ? Us if being on the different scenar impacts the result then need to 10mmunicate to how different are the scenarios 201. 40%. is there a missing scenario here

Group 3

> de positional : When making a de cision > ilechnical limitations" in the softwore might require to make a scenerio Singh Volumetrie Ensenble. -> depends on diffush stages of field materation -> generally no

164

Group 4 7.11.2024 manded ronaa in uncertainly () - Conhasting model elements, eg. faults, horizons, ref. b. different analogues .- not part of the same sequent. 2) - Conhasting model elements may up. give different modul distributions. If combining them for IP volumes then, OK. If purpose to place a well, then not OK.

The FORCE Integrated Reservoir Modelling Group presents Cake & Discuss

Impulse talk 2

QC of ensemble geomodels

Jamie Quin

- QC of deterministic models
 - QC of input data
 - Show model surfaces and faults match seismic
 - Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
 - Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
 - Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
 - Scroll through models in I, J, and K to ensure geological consistency.
 - Low, mid and high case deterministic models to cover uncertainty span.
 - Present model and workflow coherently
 - Close liaison with RE

- In the worst case a QC presentation of an ensemble model can sound like this
 - Blah
 - Technology
 - Blah
 - 1 million realizations
 - Blah
 - Cloud
 - Blah
 - Uncertainty ranges

Investment decision?

• In the worst case a QC presentation of an ensemble model can sound like this

- Blah
- Technology
- Blah
- 1 million realizations
- Blah
- Cloud
- Blah
- Uncertainty ranges

- In the worst case a QC presentation of an ensemble model can sound like this
 - Blah
 - Technology
 - Blah
 - 1 million realizations
 - Blah
 - Cloud
 - Blah
 - Uncertainty ranges

As an investor of QC responsible: do you believe in Nessie?

What evidence have we seen that it exists as presented?

Nessie Field

- In what ways does QC of an ensemble model differ from QC of a traditional deterministic model?
- The same things must be QC'd.

• QC of traditional models

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
- Scroll through models in I, J, and K to ensure geological consistency.
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

Conceptual Model

Technology

Challenging to capturing complexity

Deterministic 3D geomodels

Ensemble geomodels

It's going to take me a little longer to answer my e-mails now....

Mistakes, complication, software limitations, cat

Geology, geology, geology

QC of traditional models

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
- Scroll through models in I, J, and K to ensure geological consistency.
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

Nessie Field: Generic Oilfield – ref case

	Segment 1. FWL	Segment 1 Fl plain	Segment 1 Channel	Segment 1 Por	Segment 1 Por (fl plain)	Segment 1 Por (Channel)	Segment 1 Perm	Segment 1 Perm (fl plain)	Segment 1 Perm (Channel)	Segment 1 Sw	Segment 1 Sw (fl plain)	Segment 1 Sw (Channel)
Low Case	1972	50%	50%	0.20	0.12	0.25	1000	100	2000	0.40	0.95	0.30
Ref Case	2018	20%	80%	0.25	0.15	0.28	2000	200	3000	0.25	0.85	0.15
High Case	2025	5%	95%	0.30	0.18	0.32	3000	300	4000	0.10	0.60	0.10

Nessie Field: Generic Oilfield – ensemble case

Export every possible statistic for each realisation

Target facies % Actual facies % Etc

Are there other ways to QC

	Segment 1. FWL	Segment 1 Fl plain	Segment 1 Channel	Segment 1 Por	Segment 1 Por (fl plain)	Segment 1 Por (Channel)	Segment 1 Perm	Segment 1 Perm (fl plain)	Segment 1 Perm (Channel)	Segment 1 Sw	Segment 1 Sw (fl plain)	Segment 1 Sw (Channel)
P90	1972	50%	50%	0.20	0.12	0.25	1000	100	2000	0.40	0.95	0.30
P50	2018	20%	80%	0.25	0.15	0.28	2000	200	3000	0.25	0.85	0.15
P10	2025	5%	95%	0.30	0.18	0.32	3000	300	4000	0.10	0.60	0.10

• QC of traditional models.

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level.
- Scroll through models in I, J, and K to ensure geological consistency
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

Scroll through models in I, J, and K to ensure geological consistency

- Scroll through five different I sections and five J sections and scroll through? Create a video of this?
- Export maps for each realisation and scroll through these?
- Choose 10 realizations covering the uncertainty span and QC these?

QC of traditional models

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
- Scroll through models in I, J, and K to ensure geological consistency.
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

Ref case plus ensemble

STOIIP

High

The traditional reference case model has value.

- Detailed QC is possible (3D scrolling etc). •
- Useful for visualisation (well planning etc). ٠
- Useful to anchor ensemble volumes. •
- Easy to modify the ref case to generate high ٠ and low cases and anchor the ensemble volume distribution.
- The same workflow can be used to generate ٠ deterministic reference cases and ensembles so it needn't involve more work.

2 .	€ For loop Variable \$i	From 1 To 1
3	Choose Determi	inistic or Probabilistic Approach - write 1 for probabilistic or 2 for deterministic in box below
4	10 Numeric expression	\$UncertaintyOrDeterministic = 1
5	Choose to run o	nly parts of the workflow
6	10 Numeric expression	\$RunGlobalInputs = 1
7	FO Numeric expression	\$RunSurfaceModelling = 1
8	ft Numeric expression	\$RunFaciesModelling = 1
9	ft) Numeric expression	\$RunPorPermModelling = 1
10	f0 Numeric expression	\$RunSaturationModelling = 1
11	FO Numeric expression	\$RunVolumesExportStats = 1
12	FO Numeric expression	\$SaveProject = 2
13	⊳ 🗗 If SRunGlobalInp	uts=1
37	▶ 🗗 If \$RunSurfaceM	todelling=1
126	▶ 🔂 If SRunFaciesMo	odelling=1
199	Fild SRunPorPermit	Modelling=1
236	F If SRunSaturation	nModelling=1
274	F If SRunVolumes	ExportStats=1
371	F If \$SaveProject=	1
374	3 End loop	

• QC of traditional models

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
- Scroll through models in I, J, and K to ensure geological consistency.
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

Facies

Parameter	Process	Variable	Comments
Facies			Hard/ soft facies are assigned from seismic and described earlier so this facies stage mainly concerns populating the different soft facies then including the dikes.
Facies	Pluri-guassian facies model 1. Construction of probability parameters for each Soft facies.	<pre>\$ProbMaj=Ran(500, 3000) \$VariogramRatio=\$ProbMaj/\$VariogramRatio \$ProbMin=\$ProbMaj/\$VariogramRatio \$ProbAzi=Triangular(0, 80,170) \$MeanSoft1=Ran(0.1, 0.90) \$MeanSoftSD=\$MeanSoft1/4 \$FractionSoft2and3</pre>	Distribution of the three soft facies. Modelling input requires probability maps for each facies. This is undertaken by firstly running pertophysical modelling on Soft1. Uncertainty variables include the mean probability and the variogram input. A second petrophysical modelling job is then run to define the split of facies Soft 2 and facies Soft 3 in the remaining probability space.
Facies	Pluri-guassian facies model 2. Construction of two Latent Gaussian fields	<pre>\$LatentGaussianMaj=Ran(500,15000) \$LatentGaussianMin=\$LatentGaussianMaj/\$VarRatio \$LatentGaussianAzi=Triangular(0,80,180) \$LatentGaussian2Maj=Ran(500,15000) \$LatentGaussian2Min=\$LatentGaussianMaj/\$VarRatio \$LatentGaussian2Azi=Triangular(0,80,180)</pre>	
Facies	Dikes are introduced in three steps. Firstly an object modelling step whereby one dike is introduced to the model in the EWT location. Then two steps of pluri-guassian facies modelling are applied.		
Facies	Dike in EWT		Firstly an object modelling step whereby one dike is introduced to the model in the EWT location
Facies	N-S Dikes	<pre>\$Dikes_N_S_Prob_Maj=Round(Ran(3000,15000)) \$Dikes_N_S_Prob_Min=\$Dikes_N_S_Prob_Maj/30 \$Prob_Maj=Round(Ran(3000,15000)) \$Prob_Min=\$Dikes_N_S_Prob_Maj/2 \$Dikes_N_S_Mean=Ran(0.03,0.15) \$Dikes_N_S_SD=\$Dikes_N_S_Mean/3</pre>	Model N-S dikes. These can comprise up to 15% of the rock volume.
Facies	E-W Dikes	<pre>\$Dikes_E_W_Prob_Maj=Round(Ran(3000,15000)) \$Dikes_E_W_Prob_Min=\$Dikes_N_S_Prob_Maj/30 \$Prob_Maj=same as above \$Prob_Min=same as above \$Dikes_E_W_Mean=Ran(0.03,0.15) \$Dikes_E_W_SD=\$Dikes_E_W_Mean/3</pre>	Model E_W dikes. These can comprise up to 15% of the rock volume.

QC of traditional models

- QC of input data
- Show model surfaces and faults match seismic
- Describe conceptual model and demonstrate that uncertainties are covered by scenarios.
- Show facies proportions, ntg, porosity, permeability, saturation etc meet the distribution in the input log data or that they vary from these in expected ways (table format).
- Report volumes at field and segment level (use this to back-calculate porosity etc does it make sense?)
- Scroll through models in I, J, and K to ensure geological consistency.
- Low, mid and high case deterministic models to cover uncertainty span.
- Present model and workflow coherently
- Close liaison with RE

- What is the best way to communicate how different conceptual scenarios are included in the ensemble?
- What is the best method to output and QC statistics from the ensemble?
- How should we conduct the visual QC how is this best achieved in an ensemble?
- Do high-mid-low deterministic cases have a role in the QC of ensembles?
- How should all the uncertainties in a model be presented in a coherent and understandable way?

www.akerbp.com

7.11.2024

Group - Notes

• TAKE A PICTURE OF YOUR FLIP CHART

- Send it to marine.seignole@akerbp.com
- Mention your group number in the subject

Group1

7.11.2024

Output and QC · Statistics vs input variables -> Input ranges 2 end points -> Stability plots -> Correlations Visual QC

Maps - avg. for zone
- areas with variation
Plots of data at different scales
Pseudo/control wells
Area polygons
Tornado plots

7.11.2024

Group3 > Aggregation con ou see anomalion & -> by having & showing different Statibutions dig more it it it wimpertant to create a -> Pecatile maps common undertanding of modelling philosophy -> flutometin > have a detailed ac of -> Utilization of GenAl the workflow of how the model built to avoid double dipping & how the is used input properties etc & see The > phot > There is no bed method " (a) per mathematical (a) does the output meter geological sense 2 leves of Qu W ensente land (2) (colo zation level > Simple vijualizations are after

Group4 7.11.2024 0 2. Grenerale avg. maps, og. facies probalitity, PV trends. Outputting shuchnal realizations, calculate states. Export figures.

7.11.2024

• Format

- Session length
- Venue /Connection to other location
- Session topics
- Other feedback

Feedback: 25 returned questionnaires

- Participants:
 - 20 people in Stavanger :various company (ConocoPhillips-DNO-AkerBP- OMV Norge -OKEA- ORLEN Upstream Norway-Petoro-Harbour Energy- Vår Energy-Norske Shell- Halliburton)
 - 5 registered in Oslo but lot of extra people (~10) came and go during the talks- various company (AkerBP, INPEX idemitsu, Pandion Energy)
 - Been contacted with a lot of people to join after the registration deadline
 - ->More companies representation, good mix of recuring participants and newcomers
- Format and length:
 - exchange of experience seems to be appreciated by all as well as the social and relax setting .
 - 2 topics instead of 3 has allowed more time for discussions- Appreciated
 - Sweet spot of too short vs too long (time allocation in busy schedule)
 - The connection with Oslo has worked but hard to hear the discussions : cold spot in the room
 - More people means more noise during discussions- group in the coffee area ?
- Topics:
 - the mix of topics were well received and considered relevant
 - one commented that practical topics are easier to relate than the general session.
 - Fail case study: may be easier to present in this relax environment than formal 2 days seminar
 - Several asked for re-runs of some sessions
- Topics suggestions:
 - Uncertainty on Hard Data and its impact
 - Session about AI was asked by several -> Lunch&learn more suitable ? : how to use AI in data analysis, AI for modelling, AI for QC
 - How to link uncertainty and risk
 - History matching communication between RE and G&G
 - Failure case discussion